Skip to main content

Advertisement

Log in

Antigen presenting cells

  • Cellular Immunology
  • Published:
Immunologic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Meuer SC, Schlossman SF, Reinherz EL: Clonal analysis of human T lymphocytes: T4-positive and T8-positive effector T cells recognize products of different major histocompatibility complex regions. Proc Natl Acad Sci USA 1982;79: 4395.

    PubMed  CAS  Google Scholar 

  2. Braciale TJ, Morrison LA, Sweetser MT, et al: Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol Rev 1987;98:95–114.

    PubMed  CAS  Google Scholar 

  3. Swain SL: T cell subsets and the recognition of MHC class. Immunol Rev 1983;74:129–142.

    PubMed  CAS  Google Scholar 

  4. Bjercke S: Effect of interferon gamma on expression of HLA-class II molecules on blood-derived dendritic cells. Acta Pathol Microbiol Immunol Scand 1987;95:137–140.

    CAS  Google Scholar 

  5. Nawroth PP, Bank I, Handley D, et al: Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 1986;163:1363–1375.

    PubMed  CAS  Google Scholar 

  6. Ghiara P, Boraschi D, Nencioni L, et al: Enhancement of in vivo immune response by tumor necrosis factor. J Immunol 1987;139:3676–3679.

    PubMed  CAS  Google Scholar 

  7. Morrissey PJ, Bressler L, Park LS, et al: Granulocyte-macrophage colony-stimulating factor augments the primary antibody response by enhancing the function of antigen-presenting cells. J Immunol 1987;139:1113–1119.

    PubMed  CAS  Google Scholar 

  8. Koide S, Inaba K, Steinman RM: Interleukin 1 enhance T-dependent immune responses by amplifying the function of dendritic cells. J Exp Med 1987;165:515–530.

    PubMed  CAS  Google Scholar 

  9. Inaba K, Witmer-Pack MD, Inaba M, et al: The function of Ia+ dendritic cells and Ia dendritic cell precursors in thymocyte mitogenesis to lectin and lectin plus interleukin-1. J. Exp Med 1988: 167:149–162.

    PubMed  CAS  Google Scholar 

  10. Zlotnik A, Fischer M, Roehm N, et al: Evidence for effects of interleukin 4 (B cell stimulatory factor 1) on macrophages: Enhancement of antigen presenting ability of bone marrow-derived macrophages. J Immunol 1987;138:4275–4279.

    PubMed  CAS  Google Scholar 

  11. Monick M, Glazier J, Hunninghake G: Human alveolar macrophages suppress interleukin-1 (IL-1) activity via the secretion of prostaglandin E2. Am Rev Respir Dis 1987;135:72–77.

    PubMed  CAS  Google Scholar 

  12. Rich EA, Tweardy DJ, Fujiwara H, et al: Spectrum of immunoregulatory functions and properties of human alveolar macrophages. Am Rev Respir Dis 1987;136:258–265.

    PubMed  CAS  Google Scholar 

  13. Shah PD: Dendritic cells but not macrophages are targets for immune regulation by natural killer cells. Cell Immunol 1987;104:440–445.

    PubMed  CAS  Google Scholar 

  14. Unanue ER, Beller DI, Lu CY, et al: Antigen presentation: Its regulation and mechanism. J Immunol 1984;132:1–5.

    PubMed  CAS  Google Scholar 

  15. Takacs L, Berzofsky JA, York-Jolley J, et al: IL-1 induction by murine T cell clones: Detection of an IL-1 inducing factor. J Immunol 1987;138:2124–2131.

    PubMed  CAS  Google Scholar 

  16. Unanue ER, Weaver CT, Fuhlbrigge RC, et al: Membrane IL-1: a key protein in antigen presentation. Ann Inst Pasteur Immunol 1987;138:489–492.

    Article  PubMed  CAS  Google Scholar 

  17. Unanue ER, Allen PM: The basis for the immunoregulatory role of macrophages and other accessory cells. Science 1987;236:551–557.

    PubMed  CAS  Google Scholar 

  18. Chesnut RW, Grey HM: Antigen presenting cells and mechanisms of antigen presentation. CRC Crit Rev Immunol 1984;5:263–316.

    Google Scholar 

  19. Katz SI, Cooper KD, Iljima M, et al The role of Langerhans cells in antigen presentation. J Invest Dermatol 1985;85(suppl): 96s-98s.

    PubMed  CAS  Google Scholar 

  20. Luger TA, Stadtler BM, Katz SI, et al: Epidermal cell (keratinocyte) derived thymocyte-activating factor (ETAF). J Immunol 1981;127:1493–1498.

    PubMed  CAS  Google Scholar 

  21. Kupper TS, Ballard DW, Chua AO, et al: Human keratinocytes contain mRNA indistinguishable from monocyte interleukin-1-alpha and-beta mRNA. Keratinocyte-epidermal cell-derived thymocyte-activating factor is identical to interleukin-1. J Exp Med 1986;164:2095–2010.

    PubMed  CAS  Google Scholar 

  22. Hamilos DL: Immunocompetent dendritic cells; in Cruse JM, Lewis RE Jr (eds): The Year in Immunology 1986–1987. Basel, Karger, 1988, vol 3, pp 89–118.

    Google Scholar 

  23. Guidos C, Wong M, Lee K: A comparison of stimulatory activities of lymphoid dendritic cells and macrophages in T lymphoproliferative responses to various antigens. J Immunol 1984;133:1179–1184.

    PubMed  CAS  Google Scholar 

  24. Mittal A, Nath I: Human T cell proliferative responses to particulate microbial antigens are supported by populations enriched in dendritic cells. Clin Exp Immunol 1987;69:611–617.

    PubMed  CAS  Google Scholar 

  25. Kawai J, Inaba K, Komatsubara S, et al: Role of macrophages as modulators but not as autonomous accessory cells in the proliferative response of immune T cells to soluble antigen. Cell Immunol 1987;109:1–11.

    PubMed  Google Scholar 

  26. Kaye PM, Chain BM, Feldmann M: Nonphagocytic dendritic cells are effective accessory cells for anti-mycobacterial responses in vitro. J Immunol 1985;134:1930–1934.

    PubMed  CAS  Google Scholar 

  27. Moss B, Flexner C: Vaccinia virus expression vectors. Annu Rev Immunol 1987;5:305–324.

    PubMed  CAS  Google Scholar 

  28. Ciavarra RP: Activated but not resting B cells act as potent antigen presenting cells for vesicular stomatitis virus Cytotoxic T cells; in Schook LB, Tew JG (eds). Antigen Presenting Cells: Diversity, Differentiation and Regulation. New York, Liss, 1988.

    Google Scholar 

  29. Fauci AS: The human immunodeficiency virus: Infectivity and mechanisms of pathogenesis. Science 1988;239:617–622.

    PubMed  CAS  Google Scholar 

  30. Chantal Petit AJ, Tersmette M, Terpstra FG, et al: Decreased accessory cell function by human monocytic cells after infection with HIV. J Immunol 1988;140:1485–1489.

    Google Scholar 

  31. Pontesilli O, Carotenuto P, Levin MJ, et al: Processing and presentation of cell-associated varicella zoster virus antigens by human monocytes. Clin Exp Immunol 1987;70; 127–135.

    PubMed  CAS  Google Scholar 

  32. Lechler RI, Batchelor JR: Restoration of immunogenicity to passenger cell depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982;155:31.

    PubMed  CAS  Google Scholar 

  33. Chain BM, Kaye PM, Feldman M: The cellular pathway of antigen presentation: Biochemical and functional analysis of antigen prosentation: Biochemical and functional analysis of antigen processing in dendritic cells and macrophages. Immunology 1986; 58:271–276.

    PubMed  CAS  Google Scholar 

  34. Sunshine GH, Mitchell TJ: Antigen presentation by splenic dendritic cells. J Invest Dermatol 1985; 85:110s-114s.

    PubMed  CAS  Google Scholar 

  35. Inaba K, Steinman RM: Accessory cell-T lymphocyte interaction: antigen-dependent and-independent clustering. J Exp Med 1986;163:247.

    PubMed  CAS  Google Scholar 

  36. Davignon D, Martz E, Reynolds T, et al: Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): Mechanism of blocking of T lymphocyte mediated killing and effects on other T and B lymphocyte functions. J Immunol 1981;127:590.

    PubMed  CAS  Google Scholar 

  37. Inaba K, Steinman RM: Monoclonal antibodies to LFA-1 and to CD4 inhibit the mixed leukocyte reaction after the antigen dependent clustering of dendritic cells and T lymphocytes. J Exp Med 1987;165:1403–1417.

    PubMed  CAS  Google Scholar 

  38. Inaba K, Young JW, Steinman RM: Direct activation of CD8 positive cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987;166:182–194.

    PubMed  CAS  Google Scholar 

  39. Lafferty KJ: Immunogenicity of foreign tissues. Transplantation 1980;29:179.

    Article  PubMed  CAS  Google Scholar 

  40. Faustman D, Lacy PE, Davie JM: Transplantation without immunosuppression. Diabetes 1982; 31 (suppl 4): 11–14.

    PubMed  Google Scholar 

  41. Faustman DL; Steinman RM, Gebel HM, et al: Prevention of rejection of murine islet allografts by pretreatment with antidendritic cell antibody. Proc Natl Acad Sci USA 1984;81:3864–3868.

    PubMed  CAS  Google Scholar 

  42. Sontheimer RD: The mixed epidermal cell-lymphocyte reaction. II. Epidermal Langerhans cells are responsible for the enhanced allogenic lymphocyte-stimulating capacity of normal human epidermal cell suspensions. J Invest Dermatol 1985;85:21s-26s.

    PubMed  CAS  Google Scholar 

  43. Chen HD, Raab S, Silvers WK: Influence of major histocompatibility complex compatible and incompatible Langerhans cells on the survival of HY-incompatible skin grafts in rats. Transplantation 1985;40:194–197.

    PubMed  CAS  Google Scholar 

  44. Inaba K, Steinman RM: Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen presenting cell) requirements for growth and lymphokine release. J Exp Med 1984;160:1717–1735.

    PubMed  CAS  Google Scholar 

  45. Steinman RM; Gutchinov B, Witmer MD, et al: Dendritic cells are the principle stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 1983;157:613–627.

    PubMed  CAS  Google Scholar 

  46. Inaba K, Witmer MD, Stienman RM: Clustering of dendritic cells, helper T lymphocytes, and histocompatible B cells during primary antibody responses in vitro. J Exp Med 1984;160:858–876.

    PubMed  CAS  Google Scholar 

  47. Krieger JI, Grammer SF, Grey HM, et al: Antigen presentation by splenic B cells: Resting B cells are ineffective whereas activated B cells are effective accessory cells for T cells responses. J Immunol 1985;135:2937–2945.

    PubMed  CAS  Google Scholar 

  48. Krieger JI, Chesnut RW, Grey HM: Capacity of B cells to function as stimulatory of a primary mixed leukocyte reaction. J Immunol 1986;137:3117–3123.

    PubMed  CAS  Google Scholar 

  49. Webb SR, Li JH, Wilson DB, et al: Capacity of small B cell-enriched populations to stimulate mixed lymphocyte reactions: marked differences between irradiated vs. mitomycin C-treated stimulators. Eur J Immunol 1985;15:92.

    PubMed  CAS  Google Scholar 

  50. Ron Y, Sprent J: T cell priming in vivo: A major role for B cells in presenting antigen to T cells in lymph nodes. J Immunol 1987;138:2848–2856.

    PubMed  CAS  Google Scholar 

  51. Ron Y, Sprent J: B cells as antigen presenting cells in vivo; in Schook LB, Tew JG (eds): Antigen Presenting Cells: Diversity, Differentiation and Regulation. New York: Liss. 1988, pp 321–329.

    Google Scholar 

  52. Janeway CA, Ron J, Katz ME: The B cell is the initiating antigen presenting cell in peripheral lymph nodes. J Immunol 1987; 138: 1051–1055.

    PubMed  Google Scholar 

  53. Casten LA, Pierce SK: Receptor-mediated B cell antigen processing. Increased antigenicity of a globular protein covalently coupled to antibodies specific for B cell surface structures. J Immunol 1988; 140: 404–410.

    PubMed  CAS  Google Scholar 

  54. Ochi A, Worton KS, Woods G, et al: A novel strategy for immunotherapy using antibody-coupled carriers to focus cytotoxic T helper cells. Eur J Immunol 1987; 17: 1645–1648.

    PubMed  CAS  Google Scholar 

  55. Swain SL, Dutton RW: Consequences of direct interaction of helper T cells with B cells presenting antigen. Immunol Rev 1987; 99: 263–280.

    PubMed  CAS  Google Scholar 

  56. Czitrom AA; Sunshine GH, Reme E, et al: Stimulator cell requirements for allospecific T cell subsets: Specialized accessory cells are required to activate helper but not cytolytic T lymphocyte precursors. J Immunol 1983; 130: 546–550.

    PubMed  CAS  Google Scholar 

  57. Czitrom AA, Katz DR, Sunshine GH: Alloreactive cytotoxic T lymphocyte responses to H-2 products on purified accessory cells. Immunology 1982; 45: 553–560.

    PubMed  CAS  Google Scholar 

  58. Czitrom AA, Edwards S, Katz DR, et al: Characterization of stimulator cells for alloreactive cytotoxic T lymphocyte responses in vivo. Cell Immunol 1985; 90: 503–513.

    PubMed  CAS  Google Scholar 

  59. Kappler JW, Skidmore B, White J, et al: Antigen-inducible H-2-restricted interleukin-2-producing T cell hybridomas. J Exp Med 1981; 153: 1198–1214.

    PubMed  CAS  Google Scholar 

  60. Hamilos DL: The T cell receptor for antigen. A critique of recent experimental literature. Surv Synth Pathol Res 1984; 3: 292–310.

    PubMed  CAS  Google Scholar 

  61. Heber-Katz E, Hansburg D, Schwartz RH: The Ia molecule of the antigen-presenting cell plays a critical role in immune response gene regulation of T cell activation. J Mol Cell Biol 1983; 1: 3–14.

    CAS  Google Scholar 

  62. Rosenthal AS: Determinant selection and macrophage function in genetics control of the immune response. Immunol Rev 1978; 40: 136.

    PubMed  CAS  Google Scholar 

  63. Sercarz EE, Metzger DW: Epitope-specific and idiotype-specific cellular interactions in a model protein antigen system. Springer Semin Immunopathol 1980; 3: 145–170.

    PubMed  CAS  Google Scholar 

  64. Buus S, Sette A, Grey HM: The interaction between protein derived immunogenic peptides and IA. Immunol Rev 1987; 98: 115–141.

    PubMed  CAS  Google Scholar 

  65. Babbit BP, Allen PM, Matsueda G, et al: Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985; 317: 359.

    Google Scholar 

  66. Buus S, Sette A, Colon SM, et al: The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 1987; 235: 1353.

    PubMed  CAS  Google Scholar 

  67. Lakey EK, Casten LA, Anderson MS, et al: T cell activation by processed antigen is equally blocked by IE and IA restricted immunodominant peptides. Eur J Immunol 1987; 17: 1605–1609.

    PubMed  CAS  Google Scholar 

  68. Mellins E, Woelfel M, Pious D: Importance of HLA-DQ and-DP restriction elements in T cell responses to soluble antigen. Mutational analysis. Hum Immunol 1987; 18: 211–223.

    PubMed  CAS  Google Scholar 

  69. Nunez G, Ball EJ, Stastny P: Antigen presentation by adherent cells from human peripheral blood. Correlation between T cell activation and expression of HLA-DQ and-DR antigens. Hum Immunol 1987; 19: 29–39.

    PubMed  CAS  Google Scholar 

  70. Unanue ER, Allen PM: The basis for the immunoregulatory role of macrophages and other accessory cells. Science 1987; 236: 551–557.

    PubMed  CAS  Google Scholar 

  71. Sette A, Buus S, Colon S, et al: Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature 1987; 328: 395–399.

    PubMed  CAS  Google Scholar 

  72. Bjorkman PJ, Saper MA, Samraoui B, et al: Structure of the human class I histocompatibility antigen, HLA-AS2. Nature 1987; 329: 506–512.

    PubMed  CAS  Google Scholar 

  73. Bjorkman PJ, Saper MA, Samraoui B, et al: The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329: 512–518.

    PubMed  CAS  Google Scholar 

  74. Lakey EK, Margoliash E, Pierce SK: Identification of a peptide binding protein that plays a role in antigen presentation. Proc Natl Acad Sci USA 1987; 84: 1659–1663.

    PubMed  CAS  Google Scholar 

  75. Betancourt SB, Solvay MJ, Irani DN, et al: Heterogeneity in cellular antigen retention structures. J Immunol 1987; 139: 3725–3729.

    PubMed  CAS  Google Scholar 

  76. Falo LD, Haber SI, Herman S, et al: Characterization of antigen association with accessory cells: Specific removal of processed antigen from the cell surface by phospholipases. Proc Natl Acad Sci USA 1987; 84: 522–526.

    PubMed  CAS  Google Scholar 

  77. Kurt-Jones EA, Hamburg S, Ohara J, et al: Heterogeneity of helper/inducer T lymphocytes. I. Lymphokine production and lymphokine responsiveness. J Exp Med 1987; 166: 1774–1787.

    PubMed  CAS  Google Scholar 

  78. Chatila TA, Schwartz DH, Miller R, et al: Re-quirement for mitogen, T cell-accessory cell contact, and interleukin-1 in the induction of resting T cell proliferation. Clin Immunol Immunopathol 1987; 44: 235–247.

    PubMed  CAS  Google Scholar 

  79. Geppert TD, Lipsky PE: Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: Differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol 1985; 135: 3750–3762.

    PubMed  CAS  Google Scholar 

  80. Hurme M: Membrane-associated interleukin-1 is required for the activation of T cells in the anti-CD3 antibody-induced T cell response. J Immunol 1987; 139: 1168–1172.

    PubMed  CAS  Google Scholar 

  81. Nagelkerken L, Breda-Vriesman PJC van: Membrane-associated IL-1-like activity on rat dendritic cells. J Immunol 1986; 136: 2164–2170.

    PubMed  CAS  Google Scholar 

  82. Kurt-Jones EA, Beller DI, Mizel SB, et al: Identification of a membrane-associated interleukin-1 in macrophages. Proc Natl Acad Sci USA 1985; 82: 1204–1212.

    PubMed  CAS  Google Scholar 

  83. Saunder DN, Dinarello CA, Morhenn VB: Langerhans cells production of interleukin-1. J Invest Dermatol 1984; 82: 605–607.

    Google Scholar 

  84. Waalen J, Duff GW, Forre O, et al: Interleukin-1 activity produced by human rheumatoid and normal dendritic cells. Scand J Immunol 1986; 23: 365–371.

    PubMed  CAS  Google Scholar 

  85. Oppenheim JJ, Kovacs EJ, Matsushima K, et al: There is more than one interleukin 1. Immunol Today 1986; 7: 45–56.

    CAS  Google Scholar 

  86. Hopp TP, Dower SK, March CJ: The molecular forms of interleukin-1. Immunol Res 1986; 5: 271–280.

    Article  PubMed  CAS  Google Scholar 

  87. Lomedico PT, Kilian PL, Gubler U, et al: Molecular biology of interleukin-1. Cold Spring Harbor Symp Quant Biol 1986; 51: 631–639.

    PubMed  CAS  Google Scholar 

  88. Goldminz D, Kupper TS, McGuire J: Keratinocyte membrane-associated epidermal cell-derived thymocyte activating factor (ETAF). J Invest Dermatol 1987; 88: 97–100.

    PubMed  CAS  Google Scholar 

  89. Springer TA, Davignon D, Ho MK, et al: LFA-1 and Lyt2,3 molecules associated with T lymphocyte-mediated killing; and Mac-1, and LFA-1 homologue, associated with complement receptor function. Immunol Rev 1982; 68: 171–195.

    PubMed  CAS  Google Scholar 

  90. Krensky AM, Sanchez-Madrid F, Robbins E, et al: The functional significance, distribution and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target cell interactions. J Immunol 1983; 131: 611–616.

    PubMed  CAS  Google Scholar 

  91. Krensky AM, Robbins E, Springer TS, et al: LFA-1, LFA-2, and LFA-3 antigen are involved in CTL target conjugation. J Immunol 1984; 132: 2180–2182.

    PubMed  CAS  Google Scholar 

  92. Dongworth DW, Gotch FM, Hildreth JEK, et al: Effects of monoclonal antibodies to the alpha and beta chains of the human lymphocyte function-associated (H-LFA-1) antigen on T lymphocyte functions. Eur J Immunol 1985; 15: 888–892.

    PubMed  CAS  Google Scholar 

  93. Martz E, Gromkowski SH: Lymphocyte function associated antigens: Regulation of lymphocyte adhesion in vitro and immunity in vivo. Adv Exp Med Biol 1985; 184: 291–310.

    PubMed  CAS  Google Scholar 

  94. Hemler ME: Adhesive protein receptors on hematopoietic cells. Immunol Today 1988; 9: 109–113.

    PubMed  CAS  Google Scholar 

  95. Plunkett ML, Sanders ME, Selvaraj P, et al: Rosetting of activated human T lymphocytes with autologous erythrocytes. Definition of the receptor and ligand molecules as CD2 and lymphocyte function-associated antigen 3 (LFA-3). J Exp Med 1987; 165: 664–676.

    PubMed  CAS  Google Scholar 

  96. Dustin M, Sanders M, Shaw S, et al: Purification and CD2 binding function of LFA-3 (abstract). Fed Proc 1987; 46: 1498.

    Google Scholar 

  97. Vollger LW, Tuck DT, Springer TA, et al: Thymocyte binding to human thymic epithelial cells is inhibited by monoclonal antibodies to CD2 and LFA-3 antigens. J Immunol 1987; 138: 358–363.

    PubMed  CAS  Google Scholar 

  98. Rothlein R, Dustin ML, Marlin SD, et al: A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 1986; 137: 1270–1274.

    PubMed  CAS  Google Scholar 

  99. Dougherty GJ, Hogg N: The role of monocyte lymphocyte function-associated antigen-1 (LFA-1) in accessory cell function. Eur J Immunol 1987; 17: 943–947.

    PubMed  CAS  Google Scholar 

  100. Krieger JI, Jenis DM, Chesnut RW, et al: Studies on the capacity of intact cells and purified Ia of different B cell sources to function in antigen presentation to T cells. J Immunol 1988; 140: 388–394.

    PubMed  CAS  Google Scholar 

  101. Kradin RL, McCarthy KM, Daily CI, et al: The poor accessory cell function in the rat may reflect their inability to form clusters with T cells. Clin Immunol Immunopathol 1987; 44: 348–363.

    PubMed  CAS  Google Scholar 

  102. Kupfer A, Swain SL, Janeway CA, et al: The specific direct interaction of helper T cells and antigen-presenting B cell. Proc Natl Acad Sci 1986; 83:6080–6083.

    PubMed  CAS  Google Scholar 

  103. Marrack P, Endres R, Shimonkevitz R, et al: The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med 1983; 158: 1077.

    PubMed  CAS  Google Scholar 

  104. Dialynas DP, Quan ZS, Wall Ka, et al: Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK-1.5: Similarity of L3T4 to the human leu3/T4 molecule. J Immunol 1983; 131: 2445.

    PubMed  CAS  Google Scholar 

  105. Swain SI, Dialynas DP, Fitch FW, et al: Monoclonal antibody to L3T4 blocks the function of T cells specific for class 2 major histocompatibility complex antigens. J Immunol 1984; 132: 1118–1123.

    PubMed  CAS  Google Scholar 

  106. Hamilos DL, Mascali JJ, Chesnut RW, Young RM, Ishioka G, Grey HM: The role of dendritic cells as stimulators of Mls-specific T cell responses in the mouse. I. Differential capacity of dendritic cells to stimulate Mls-reactive T cell hybridomas and the primary anti-Mls mixed lymphocyte reaction. J Immunol, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilos, D.L. Antigen presenting cells. Immunol Res 8, 98–117 (1989). https://doi.org/10.1007/BF02919073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919073

Keywords

Navigation