Applied Biochemistry and Biotechnology

, Volume 39, Issue 1, pp 27–40 | Cite as

Microbial fuel-cells

Electricity production from carbohydrates
  • Robin M. Allen
  • H. Peter Bennetto
Session 1 Thermal, Chemical, and Biological Processing

Abstract

Microbial fuel cells containingProteus vulgaris and oxidation-reduction (“redox”) mediators were investigated. The bacteria were chemically immobilized onto the surface of graphite felt electrodes, which supported production of continuous electric current and could be reused after storage A computer-controlled carbohydrate feed system enabled the cell to generate a constant output with improved efficiency compared to the performance obtained with single large additions of fuel. The response to additions of substrate when immobilized bacteria were used was faster than that achieved with freely suspended organisms. This is attributed to the advantageous mass-transfer kinetics resulting from the proximity of the immobilized bacteria and the electrode surface.

Index Entries

Microbial fuel cell mediator immobilization computer control bioanode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennetto, H. P. (1984), inLife Chemistry Reports, vols., 2, no. 4, Michelson, A. M., and Bannister, J. V., eds., Harwood Academic, London, pp. 363–453.Google Scholar
  2. 2.
    Habermann, W. and Pommer, E. H. (1991),Appl. Microbiol. Biotechnol. 35, 128.CrossRefGoogle Scholar
  3. 3.
    Sell, D., Kramer, P., and Kreysa, G. (1989),Appl. Microbiol. Biotechnol. 31, 211.CrossRefGoogle Scholar
  4. 4.
    Tanisho, S., Kamiya, N., and Wakao, N. (1989),Bioelectrochemistry and Bioenergetics 21, 25.CrossRefGoogle Scholar
  5. 5.
    Tanaka, K., Kashiwagi, N., and Ogawa, T. (1988),J. Chem. Tech. Biotechnol. 42, 235.Google Scholar
  6. 6.
    Roller, S. D., Bennetto, H. P., Delaney, G. M., Mason, J. R., Stirling, J. L., and Thurston, C. F. (1984),J. Chem. Tech. Biotechnol..34B, 3.Google Scholar
  7. 7.
    Delaney, G. M., Bennetto, H. P., Mason, J. R., Stirling, J. L., and Thurston, C. F. (1984),J. Chem. Tech. Biotechnol. 34B, 13.Google Scholar
  8. 8.
    Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., and Stirling, J. L. (1985),J. Gen. Microbiol. 131, 1393, and unpublished results.Google Scholar
  9. 9.
    Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F. (1985),Biotechnol. Lett. 7, 699.CrossRefGoogle Scholar
  10. 10.
    Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., Stirling, J. L., Thurston, C. F., and White, D. R., Jr. (1983),Proc. First World Conf. Commercial Applications and Implications of Biotechnology. Biotech '83, Online, London, 655.Google Scholar
  11. 11.
    Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., Stirling, J. L., Thurston, C. F., and White, D. R., Jr. (1986),Alternative Energy Sources VII, vol. 4, Veziroglu, N., ed., Hemisphere, New York, p. 143.Google Scholar
  12. 12.
    Sheehan, J. C., and Hess, G. P. (1955),J. Amer. Chem. Soc.,77, 1067.CrossRefGoogle Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.Google Scholar
  14. 14.
    Bennetto, H. P., Stirling, J. L., and Tanaka, K. (1985),Chemistry and Industry 695.Google Scholar
  15. 15.
    Southampton Electrochemistry Group (1985),Instrumental Methods in Electrochemistry, Ellis Horwood, Chicester, p. 418.Google Scholar
  16. 16.
    Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., Stirling, J. L., Thurston, C. F., and Tanaka, K. (1982),Abs. 8th Int. Conf. Non-Aqueous Solutions, IUPAC, Nantes, 4-2C.Google Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Robin M. Allen
    • 1
  • H. Peter Bennetto
    • 1
  1. 1.Bioelectrochemistry and Biosensors GroupKing's College (University of London)LondonUK

Personalised recommendations