Skip to main content
Log in

Assimilation and simulation of typhoon Rusa (2002) using the WRF system

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Using the recently developed Weather Research and Forecasting (WRF) 3DVAR and the WRF model, numerical experiments are conducted for the initialization and simulation of typhoon Rusa (2002). The observational data used in the WRF 3DVAR are conventional Global Telecommunications System (GTS) data and Korean Automatic Weather Station (AWS) surface observations. The Background Error Statistics (BES) via the National Meteorological Center (NMC) method has two different resolutions, that is, a 210-km horizontal grid space from the NCEP global model and a 10-km horizontal resolution from Korean operational forecasts. To improve the performance of the WRF simulation initialized from the WRF 3DVAR analyses, the scale-lengths used in the horizontal background error covariances via recursive filter are tuned in terms of the WRF 3DVAR control variables, streamfunction, velocity potential, unbalanced pressure and specific humidity. The experiments with respect to different background error statistics and different observational data indicate that the subsequent 24-h the WRF model forecasts of typhoon Rusa’s track and precipitation are significantly impacted upon the initial fields. Assimilation of the AWS data with the tuned background error statistics obtains improved predictions of the typhoon track and its precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, D. M., W. Huang, Y.-R. Guo, and Q. Xiao, 2004: A three-dimensional variational (3DVAR) data assimilation system for use with MM5: Implementation and initial results.Mon. Wea. Rev.,132, 897–914.

    Article  Google Scholar 

  • Courtier, P., 1985: Experiments in data assimilation using the adjoint model technique. Preprints.Workshop on High-Resolution Analysis, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 1–20.

  • Courtier, P., E. Anderson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. Hollingsworth, F. Rabier, and M. Fischer, 1998: The ECMWF implementation of three dimensional variational (3DVAR) data assimilation. Part I: Formulation.Quart. J. Roy. Meteor. Soc.,123, 1–26.

    Google Scholar 

  • Courtier, P., J. -N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach.Quart. J. Roy. Meteor. Soc.,120, 1367–1387.

    Article  Google Scholar 

  • Derber, J. C., 1985: The variational 4-D assimilation of analyses using filtered models as constraints. Ph.D. dissertation, University of Wisconsin-Madison, 142pp.

  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing.J. Appl. Meteor.,34, 3–15.

    Google Scholar 

  • Le Dimet, F. X., 1982: A general formalism of variational analysis. CIMMS Rep. 22, 1–34. [Available from Sarkeys Energy Center, Rm 1110, University of Oklahoma, Norman, OK 73019.]

    Google Scholar 

  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects.Tellus,38A, 97–110.

    Google Scholar 

  • Lewis, J. M., and J. C. Derber, 1985: The use of the adjoint equation to solve a variational adjustment problem with advective constraints.Tellus,37A, 309–322.

    Article  Google Scholar 

  • Li, Z., I. M. Navon, and Y. Zhu, 2000: Performance of 4D-var with different strategies for the use of adjoint physics with the FSU global spectral model.Mon. Wea. Rev.,128, 668–688.

    Article  Google Scholar 

  • Li, Z., and I. M. Navon, 2001: Optimality of variational data assimilation and its relationship with the Kalman filter and smoother.Quart, J. Roy. Meteor. Soc.,127, 661–883.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model.J. Climate Appl. Meteor.,22, 1065–1092.

    Article  Google Scholar 

  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction.Quart. J. Roy. Meteor. Soc.,112, 1177–1194.

    Article  Google Scholar 

  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme.Quart. J. Roy. Meteor. Soc.,126, 2991–3012.

    Article  Google Scholar 

  • Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model.Mon. Wea. Rev.,120, 1433–1446.

    Article  Google Scholar 

  • Parish, D. F., and J. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system.Mon. Wea. Rev.,120, 1747–1763.

    Article  Google Scholar 

  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances.Mon. Wea. Rev.,131, 1524–1535.

    Article  Google Scholar 

  • Rabier, F., A. McNally, E. Anderson, P. Courtier, P. Unden, J. Eyre, A. Hollingsworth, and F. Bouttier, 1997: The ECMWF implementation of three dimensional variational (3DVar) data assimilation. Part II: Structure function.Quart. J. Roy. Meteor. Soc.,123, 27–52.

    Google Scholar 

  • Sasaki, Y. 1958: An objective analysis based on variational methods.J. Meteor. Soc. Japan,36, 77–88.

    Google Scholar 

  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation-Part I. Theory.Quart. J. Roy. Meteor. Soc.,113, 1311–1328.

    Article  Google Scholar 

  • Wu, W.-S., J. Purser, and D. E. Parrish, 2002: Threedimensional variational analysis with spatial inhomogeneous covariances.Mon. Wea. Rev.,130, 2905–2916.

    Article  Google Scholar 

  • Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme.Mon. Wea. Rev.,128, 2252–2269.

    Article  Google Scholar 

  • Xiao, Q., X. Zou, M. Pondeca, M. A. Shapiro, and C. Velden, 2002: Impact of GMS-5 and GOES-9 satellitederived winds on the prediction of a NORPEX extratropical cyclone.Mon. Wea. Rev.,130, 507–528.

    Article  Google Scholar 

  • Zhang, X., B. Wang, Z. Ji, Q. Xiao, and X. Zhang, 2003: Initialization and simulation of a typhoon using 4dimensional variational data assimilation—Research on typhoon Herb (1996).Adv. Atmos. Sci.,20(4), 612–622.

    Article  Google Scholar 

  • Zou, X., I. M. Navon, and J. G. Sela, 1993a: Control of gravitational oscillations in variational data assimilation.Mon. Wea. Rev.,121, 272–289.

    Article  Google Scholar 

  • Zou, X., I. M. Navon, and J. G. Sela, 1993b: Variational data assimilation with moist threshold processes using the NMC spectral model.Tellus,45A, 370–387.

    Google Scholar 

  • Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme.J. Atmos. Sci.,57, 836–860.

    Article  Google Scholar 

  • Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment.Mon. Wea. Rev.,121, 2396–2408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Jianfeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jianfeng, G., Xiao, Q., Kuo, YH. et al. Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv. Atmos. Sci. 22, 415–427 (2005). https://doi.org/10.1007/BF02918755

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918755

Key words

Navigation