Skip to main content
Log in

The antitumor immune response as a problem of self-nonself discrimination: Implications for immunotherapy

  • Symposium
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstrac

Much evidence now exists that tumors possess specific antigens recognizable by T cells. The goal of immunotherapy is to break tolerance to these antiens while preserving self-tolerance. Recently, newer approaches have been developed in animal systems that modify tumor cells genetically so that they express new antigens or secrete certain cytokines. Engineering tumor cells to secrete cytokines in a paracrine fashion can induce powerful local cytokine effects which, in addition to inducing local inflammation, can alter the presentation of tumor antigens or the activation of tumor-antigen-specific T lymphocytes, resulting in systemic antitumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Germain RN: Immunology: The ins and outs of antigen processing and presentation. Nature 1986;322:687–689.

    Article  PubMed  CAS  Google Scholar 

  2. Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikara JP, Janssens C, Reddehase M, Lejeune J, Boon T: Structure of the gene of tum transplantation antigen P91A: The mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 1989;58:293–303.

    Article  PubMed  CAS  Google Scholar 

  3. Hunter T: Cooperation between oncogenes. Cell 1991;64:249–270.

    Article  PubMed  CAS  Google Scholar 

  4. Marshall CJ: Tumor suppressor genes. Cell 1991;64:313–326.

    Article  PubMed  CAS  Google Scholar 

  5. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, van den Eynde B, Knuth A, Boon T: A gene encoding an antigen recognized cytotoxic T lymphocytes on a human melanoma. Science 1991; 254:1643–1648.

    Article  PubMed  Google Scholar 

  6. Zinkernagel RM, Callahan GN Althage A, Cooper S, Streilein JW, Klein J: The lymphoreticular system in triggering virus plus self-specific cytotoxic T cells: Evidence for T help. J Exp Med 1978;147:897–911.

    Article  PubMed  CAS  Google Scholar 

  7. von Boehmer H, Haas W: Distinct Ir genes for helper and killer cells in the cytotoxic response to H-Y antigen. J Exp Med 1979;150:1134–1142.

    Article  Google Scholar 

  8. Keene J, Forman J: Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 1982;155:768–782.

    Article  PubMed  CAS  Google Scholar 

  9. Linsley PS, Clark EA, Ledbetter J: T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 1990;87:5031–5035.

    Article  PubMed  CAS  Google Scholar 

  10. Fearon E, Pardoll D, Itaya T, Golumbek P, Levitsky H, Simons J, Karasuyama H, Vogelstein B, Frost P: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990;60:397–403.

    Article  PubMed  CAS  Google Scholar 

  11. Jenkins MK, Pardoll DM, Mizuguchi J, Chused TM, Schwartz RH: Molecular events in the induction of a nonresponsive state in interleukin-2-producing helper T-lymphocyte clones. Proc Natl Acad Sci USA 1987;84:5409.

    Article  PubMed  CAS  Google Scholar 

  12. Jenkins MK, Pardoll DM, Mizuguchi J, Quill H, Schwartz RH: T-cell unresponsiveness in vivo and in vitro: Fine specificity of induction and molecular characterization of the unresponsive state. Immunol Rev 1987;95:113.

    Article  PubMed  CAS  Google Scholar 

  13. Gaspari A, Jenkins M, Katz S: Class II MHC-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific TH1 clones. J Immunol 1988;141:2216–2220.

    PubMed  CAS  Google Scholar 

  14. Lo D, Burkly L, Widera G, Cowing C, Flavell R, Palmiter R, Brinster R: Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 1988;53:159–168.

    Article  PubMed  CAS  Google Scholar 

  15. Markmann J, Lo D, Naji A, Palmiter R, Brinster R, Heber-Katz E: Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature 1988;336:476.

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Botran R, et al: Interleukin 4 mediates autocrine growth of helper T cells after antigenic stimulation. Proc Natl Acad Sci USA 1986;83:9689–9693.

    Article  PubMed  CAS  Google Scholar 

  17. Hu-Li J, et al: B cell stimulatory factor 1 (interleukin 4) is a potent costimulant for normal resting T lymphocytes. J Exp Med 1987;165:157–172.

    Article  PubMed  CAS  Google Scholar 

  18. Widmer M, Grabstein K: Regulation of cytolytic T-lymphocyte generation by B-cell stimulatory factor. Nature 1987;326:795–798.

    Article  PubMed  CAS  Google Scholar 

  19. Trenn G, Takayama H, Hu-Li J, Paul WE, Sitkovsky MV: B cell stimulatory factor 1 (IL-4) enhances the development of cytotoxic T cells from Lyt-2+ resting murine T lymphocytes. J Immunol 1988;140: 1101–1106.

    PubMed  CAS  Google Scholar 

  20. Grusby MJ, et al: Cloning of an interleukin 4 inducible gene from cytotoxie T lymphocytes and its identification as a lipase. Cell 1990; 60:451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golumbek, P., Levitsky, H., Jaffee, L. et al. The antitumor immune response as a problem of self-nonself discrimination: Implications for immunotherapy. Immunol Res 12, 183–192 (1993). https://doi.org/10.1007/BF02918303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918303

Key Words

Navigation