Skip to main content
Log in

Possibilities of classification of topographically distributed neurophysiological multi-channel data

  • Preliminary Communication
  • Published:
International journal of clinical monitoring and computing

Abstract

Progress in quantifying states of cerebral function and in the further development of automated EEG processing demands the application of suitable methods for the reduction of neurophysiological multi-channel data as well as their automatic classification. The method used here for reducing multi-channel data was to gain distributions of parametric descriptors from EEG data from computer-aided topographic electroencephalometry (CATEEM®), for example the relative and absolute band power in the frequency bands delta, theta, alpha 1, alpha 2, beta 1, beta 2, total power, median and mode frequency, and other parameters. These values were subjected to cluster analysis. The classification of EEG parameters was carried out by means of discrimination analysis and neural networks. The practicability of both procedures was demonstrated in the reduction and classification of EEG data in the context of a normed study involving 104 healthy adults. These data have been used as the basis for a new evaluation study of 60 additional intraoperative EEG recordings obtained with CATEEM®. In that newly started study, the effects of sedative and anaesthetic drugs on EEG behavior and psychophysiologic behavior remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger H. Über das Elektroenzephalogramm des Menschen (On the human electroencephalogram). Arch Psychiatr 1931; 101: 452–469.

    Article  Google Scholar 

  2. Bickford RG. Automatic electroencephalographic control of general anaesthesia. EEG. Clin Neurophysiol, 1950; 2: 93–98.

    Article  Google Scholar 

  3. Bickford RG. Neurophysiological applications of an automatic anaesthetic regulator controlled by brain potentials. Amer J Physiol 1949; 159: 562–569.

    Google Scholar 

  4. Brosius G. SPSS/PC+ Advanced Statistics and Tables. McGraw-Hill, 1989.

  5. Christian W. Klinische Elektroenzephalographie (Clinical electroencephalography). Thieme Verlag, Stuttgart, 1975.

    Google Scholar 

  6. Gloger J, Rölz L. Beitrag zur Entwicklung eines mikrorechnergestützen anästhesie-spezifischen EEG-Auswertungs- und Überwachungssystems für den Echtzeitbetrieb (On the development of a microcomputer-aided anaesthesia-specific EEG evaluation and EEG surveillance system for operation in realtime). Dissertation B, Humboldt University Berlin, 1989.

  7. Henderson RS, Holmes CMcK. Reversal of the anaesthetic action of sodium gammahydroxybutyrate. Anaesth. Intens. Care IV, 1976; 4: 351–354.

    CAS  Google Scholar 

  8. Hoffmann HC, Spüler M, Hellmann H, Dimpfel W. Design and implementation of a realtime system for computer aided topographical electroencephalometry. International Conference of Medical Information and Medical Education, Proceedings, Prague, 1990.

  9. John ER, Prichep LS, Easton B. Normative Data Banks. Basic Concepts, Methods and Results of Norm Constructions. Methods of Analysis of Brain Electrical and Magnetic Signals. EEG Handbook (revised series, Vol. 1) 1987; 449–495.

    Google Scholar 

  10. Jung R. Neurophysiologische Untersuchungsmethoden (Methods of neurophysiological investigation). Handbuch Innere Medizin (Handbook of Internal Medicine) Vol. V/1 Springer, Heidelberg, 1953.

    Google Scholar 

  11. Kubicki S, Höller L. Systematische Einteilung der EEG-Grundrhythmen und- Normvarianten (Systematic classification of EEG basic rhythms and norm variations) Das EEG-Labor (The EEG Laboratory) 1980; 2, Issue 1: 32–53.

    Google Scholar 

  12. Kugler J. Elektroenzephalographie in Klinik und Praxis (Electroencephalography in the Clinic and in Practice). Thieme Verlag, Stuttgart, 1963.

    Google Scholar 

  13. Lippmann RP. An introduction to computing with neural nets. IEEE ASSP Magazine, 1987, April.

  14. Pichlmayr I, Jeck-Thole S. Die Bedeutung des EEG als Überwachungsparameter in der Anästhesiologie (The significance of the EEG as a surveillance parameter in anaesthesiology), Die Zeitschrift der Kassenärztlichen Vereinigung Niedersachsen (The Magazine of the State Health Insurance Association of Lower Saxony) 1992; 3–8.

  15. Rölz L, Wolter S, Schöntube E. Reduktion und Klassifikation von EEG-Daten der Computergestützten Topographischen Elektroenzephalometrie (CATEEM®) (Reduction and classification of EEG data from computer-aided topographical electroencephalometry). Der Anaesthesist (The Anaesthesiologist) 1992; (Supplement/92): 136–137.

    Google Scholar 

  16. Rölz L, Wolter S, Schöntube E. Reduktion und Klassifikation von EEG-Daten der Computergestützten Topographischen Elektroenzephalometrie (Reduction and classification of EEG data from computer aided topographical electroencephalometry) in special clinical studies. Brain Topography 1993; 5: 289–295.

    Article  Google Scholar 

  17. Schultz A, Pichlmayr I. Monitoring der Narkosetiefe: monoparametrischer oder multivariater Ansatz? (Monitoring the depth of narcosis: monoparametric or multi-variant approach?). Die EDV Zeitschrift der Kassenärtzlichen Vereinigung Niedersachsen (The EDP Magazine of the State Health Insurance Association of Lower Saxony) 1992: 17–24.

  18. Schüttler J, Schwilden H, Stoeckel H. EEG-Monitoring und Narkosetiefe (EEG monitoring and narcosis depth). In: Schwilden H, Stoeckel H, editors. Die Inhalationsnarkose: Steuerung und Überwachung (Inhalation Narcosis: Control and Surveillance). Symposium, Bonn, 1986. Schriftenreihe Intensivmedizin, Notfallmedizin, Anästhesiologie (Publication Series Intensive Care, Emergency Care, Anaesthesiology) Vol. 58, Georg Thieme Verlag, Stuttgart 1987; 141–150.

    Google Scholar 

  19. Schwilden H, Stoeckel H. Untersuchungen über verschiedene EEG-Parameter als Indikatoren des Narkosezustandes (Investigation of various EEG parameters as indicators of a state of narcosis). Anästhes Intensivth Notfallmed (Anaesthes Intensive Ther Emergency Med) 1980; 15: 279–286.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rölz, L., Wolter, S., Klee, B. et al. Possibilities of classification of topographically distributed neurophysiological multi-channel data. J Clin Monit Comput 13, 27–34 (1996). https://doi.org/10.1007/BF02918209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918209

Key words

Navigation