Skip to main content

Advertisement

Log in

Mechanisms of the pathogenic autoimmune response in lupus: Prospects for specific immunotherapy

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A major step towards understanding the basic mechanism of systemic lupus erythematosus (SLE), the prototypic autoimmune disease that developsspontaneously, has been the identification of nucleosomes as a primary immunogen in this disease. The production of pathogenic autoantibodies in SLE results from an MHC clas-II-restricted, cognate interaction between select populations of T helper cells and B cells that are specific for nucleosomal components. These observations pave the way for specific immunotherapy that blocks this pathogenic T and B cell interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ternynck T, Avrameas S: Murine natural monoclonal autoantibodies: A study of their polyspecificities and their affinities. Immunol Rev 1986; 94:99–112.

    PubMed  CAS  Google Scholar 

  2. Madaio MP, Hodder S, Schwartz RS, Stollar BD: Responsiveness of autoimmune and normal mice to nucleic acid antigens. J Immunol 1984;132:872–876.

    PubMed  CAS  Google Scholar 

  3. Howie JB, Helyer BJ: The immunology and pathology of NZB mice. Adv Immunol 1968;9:215–268.

    PubMed  CAS  Google Scholar 

  4. Datta SK, Schwartz RS: Genetics of expression of xenotropic virus and autoimmunity in NZB mice. Nature 1976;263:412–415.

    PubMed  CAS  Google Scholar 

  5. Datta SK, Schwartz RS: Mendelian segregation of loci controling xenotropic virus production in NZB crosses. Virology 1977;83:449–452.

    PubMed  CAS  Google Scholar 

  6. Datta SK, Manny N, Andrzejewski C, Andre-Schwartz J, Schwartz RS: Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand Black mice. I: Xenotropic virus. J Exp Med 1978;147: 854–871.

    PubMed  CAS  Google Scholar 

  7. Datta SK, McConahey PJ, Manny N, Theofilopoulos AN, Dixon FJ, Schwartz RS: Genetic studies of autoimmunity and retrovirus expression in crosses of NZB mice. II: The viral envelope glycoprotein gp 70. J Exp Med 1978;147:872–881.

    PubMed  CAS  Google Scholar 

  8. Eastcott JW, Schwartz RS, Datta SK: Genetic analysis of the inheritence of B cell hyperactivity in relation to the development of autoantibodies and glomerulonephritis in NZB × SWR crosses. J Immunol 1983; 131:2232–2239.

    PubMed  CAS  Google Scholar 

  9. Datta SK: A search for the underlying mechanisms of systemic autoimmune disease in the NZB×SWR model. Clin Immunol Immunopathol 1989;51:141–156.

    PubMed  CAS  Google Scholar 

  10. Sercarz EE, Datta SK: Mechanisms of autoimmunization: Perspective from the mid-90s. Curr Opin Immunol 1994;6:875–881.

    PubMed  CAS  Google Scholar 

  11. Kelly VE, Winkelstein A: Age and sex-related glomerulonephritis in New Zealand white mice. Clin Immunol Immunopathol 1980;16: 142–150.

    Google Scholar 

  12. Yoshiki T, Mellors RC, Strand M, August JT: The viral envelope glycoprotein of murine leukemia virus and the pathogenesis of immune complex glomerulonephritis of New Zealand mice. J Exp Med 1974;140: 1011–1027.

    PubMed  CAS  Google Scholar 

  13. Schwartz RS: Virus and systemic lupus erythematosus. N Engl J Med 1975;293:132–138.

    PubMed  CAS  Google Scholar 

  14. Lewis RM, Tannenberg W, Smith C, Schwartz RS: C-type viruses and systemic lupus erythematosus. Nature 1974;252:78–79.

    PubMed  CAS  Google Scholar 

  15. Talal N: Immunologic and viral factors in the pathogenesis of systemic lupus erythematosus. Arthritis Rheum 1970;13:887–894.

    PubMed  CAS  Google Scholar 

  16. Lambert PH, Dixon FJ: Genesis of anti-nuclear antibody in NZB/W mice: Role of genetic factors and of viral infections. Clin Exp Immunol 1970;6:829–839.

    PubMed  CAS  Google Scholar 

  17. Levy JA: Xenotropic C-type viruses and autoimmune disease. J Rheumatol 1975;2:135–148.

    PubMed  CAS  Google Scholar 

  18. Panem S, Ordonez NG, Kerstein WH, Katz AL, Spargo BH: C-type virus expression in systemic lupus erythematosus. N Engl J Med 1976; 295:470–475.

    PubMed  CAS  Google Scholar 

  19. Mellors RC, Mellors JW: Antigen related to mammalian type-C RNA viral p30 proteins is located in renal glomeruli in human systemic lupus erythematosus. Proc Natl Acad Sci USA 1976;73:233–237.

    PubMed  CAS  Google Scholar 

  20. Markenson JA, Phillip PE: Type-C viruses in systemic lupus erythematosus. Arthritis Rheum 1978;21: 266–270.

    PubMed  CAS  Google Scholar 

  21. Strand M, August JT: Type-C RNA virus gene expression in human tissue. J Virol 1974;14:1584–1596.

    PubMed  CAS  Google Scholar 

  22. Davidson WF: Immunologic abnormalities of the autoimmune mouse, Palmerston North. J Immunol 1982; 129:751–758.

    PubMed  CAS  Google Scholar 

  23. Andrew J, Hang LM, Theofilopoulos AN, Dixon FJ: Lack of relationship between serum gp70 and the severity of systemic lupus erythematosus in MRL/I mice. J Exp Med 1986; 163:458–462.

    Google Scholar 

  24. Kimura M, Andoh T, Kai K: Failure to detect type-C virus P30-related antigen in systemic lupus erythematosus: false positive reaction due to protease activity. Arthritis Rheum 1980;23:111–113.

    PubMed  CAS  Google Scholar 

  25. Datta SK, Schwartz RS: Susceptibility to lyphomas and expression of C-type RNA viruses during graft-versus-host reaction. Eur J Cancer 1976;12:977–988.

    PubMed  CAS  Google Scholar 

  26. Levy JA, Datta SK, Schwartz RS: Recovery of xenotropic virus but not ecotropic virus during graft-versus-host reaction in mice. Clin Immunol Immunopathol 1977;7:262–268.

    PubMed  CAS  Google Scholar 

  27. Bishop JM: Cellular oncogenes and retroviruses. Ann Rev Biochem 1983;52:301–354.

    PubMed  CAS  Google Scholar 

  28. Garry RF, Fermin CD, Hart DJ, Alexander SS, Donewhower LA, Luo-Zhang H: Detection of human intracisternal A-type retroviral particle antigenically related to HIV. Science 1990;250:1127–1129.

    PubMed  CAS  Google Scholar 

  29. Querry CC, Keene JD: A human autoimmune protein associated with U1 RNA contains a region of homology that is crossreactive with retroviral p30 gag antigen. Cell 1987; 51:211–220

    Google Scholar 

  30. Krieg AM, Steinberg AD: Analysis of thymic endogenous retroviral expression in murine lupus: Genetic and immune studies. J Clin Invest 1990;86:809–816.

    PubMed  CAS  Google Scholar 

  31. Datta SK, Owen FL, Womack JE, Riblet RJ: Analysis of recombinant inbred lines derived from autoimmune (NZB) and high leukemia (C58) strains: Independent multigenic systems control B cell hyperactivity, retrovirus expression and autoimmunity. J Immunol 1982;129: 1539–1544.

    PubMed  CAS  Google Scholar 

  32. Pisetsky DS, McCarty GA, Peters DV: Mechanisms of autoantibody production in autoimmune MRL mice. J Exp Med 1980;152:1302–1310.

    PubMed  CAS  Google Scholar 

  33. Cohen PL, Eisenberg RA: Anti-idiotypic antibodies to the Coomb's antibody in NZB F1 mice. J Exp Med 1982;156:173–180.

    PubMed  CAS  Google Scholar 

  34. Chiang BL, Bearer E, Ansari A, Dorshkind K, Gershwin ME: The bm12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice. J Immunol 1990;145:94–101.

    PubMed  CAS  Google Scholar 

  35. Gavalchin J, Nicklas J, Eastcott JW, Madaio MP, Stollar BD, Schwartz RS, Datta SK: Lupus prone (SWR x NZB)F1 mice produce potentially nephritogenic autoantibodies inherited from the normal SWR parent. J Immunol 1985;134:885–894.

    PubMed  CAS  Google Scholar 

  36. Gavalchin J, Seder RA, Datta SK: The NZB×SWR model of lupus nephritis. I. Cross-reactive idiotypes of monoclonal anti-DNA antibodies in relation to antigenic specificity, charge and allotype: Identification of interconnected idiotype families inherited from the normal SWR and the autoimmune NZB parents. J Immunol 1987; 138:128–137.

    PubMed  CAS  Google Scholar 

  37. Gavalchin J, Datta SK: The NZB × SWR model of lupus nephritis. II. Autoantibodies deposited in renal lesions show a restricted idiotypic diversity. J Immunol 1987;138: 138–148.

    PubMed  CAS  Google Scholar 

  38. Datta SK, Gavalchin J: The origins of pathogenic anti-DNA idiotypes in the (NZB×SWR)F1 model of lupus nephritis. Ann NY Acad Sci 1986; 475:47–58.

    PubMed  CAS  Google Scholar 

  39. Vlahakos DV, Foster MH, Adams S, Katz M, Ucci AA, Barrett KJ, Datta SK, Madaio MP: Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int 1992;41:1690–1700.

    PubMed  CAS  Google Scholar 

  40. O'Keefe TL, Bandyopadhyay S, Datta SK, Imanishi-Kari T: Variable region sequences of an idiotypically conected family of pathogenic anti-DNA autoantibodies. J Immunol 1990; 144:4275–4283.

    PubMed  Google Scholar 

  41. Sela M, Mozes E, Shearer GM, Karniely Y: Cellular aspects of, the inverse relationship between net charge of immunogens of antibodies elicited. Proc Natl Acad Sci USA 1970;67:1288–1293.

    PubMed  CAS  Google Scholar 

  42. Datta SK, Patel H, Berry D: Induction of a cationic shoft in IgG anti-DNA autoantibodies: Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med 1987; 165:1252–1268.

    PubMed  CAS  Google Scholar 

  43. Shivakumar S, Tsokos GC, Datta SK: T cell receptor α/β expressing double negative (CD4−/CD8−) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol 1989; 143:103–112.

    PubMed  CAS  Google Scholar 

  44. Tsao BP, Ebling FM, Roman C, Panosian-Sahakian N, Calame K, Hahan BH: Structural characteristics of the variable regions of immunoglobulin genes encoding a pathogenic autoantibody in murine lupus. J Clin Invest 1990;85:530–540.

    PubMed  CAS  Google Scholar 

  45. Kieber-Emmons T, Foster MH, Williams WV, Madaio MP: Structural properties of a subset of nephritogenic anti-DNA antibodies. Immunol Res 1994;13:172–185.

    PubMed  CAS  Google Scholar 

  46. Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD: The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 1992;10:731–757.

    PubMed  CAS  Google Scholar 

  47. Radic MZ, Weigert M: Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 1994;12:487–520.

    PubMed  CAS  Google Scholar 

  48. Tillman DM, Jou NT, Hill RJ, Marion TN: Both IgM and IgG anti-DNA antibodies are the products of clonally selective B cells stimulation in (NZB×NZW)F1 mice. J Exp Med 1992;176:761–779.

    PubMed  CAS  Google Scholar 

  49. Shlomchik MJ, Mascelli M, Shan H, Radic MZ, Pisetsky D, Marshak-Rothstein A, Weigert M: Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 1990; 171:265–292.

    PubMed  CAS  Google Scholar 

  50. Ebling F, Han BH: Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus: Comparison of antibodies in serum and renal elucates. Arthritis Rheum 1980;23:392–403.

    PubMed  CAS  Google Scholar 

  51. Gauthier VJ, Mannik M: A small proportion of cationic antibodies in immune complexes is sufficient to mediate their deposition in glomeruli. J Immunol 1990;145:3348–3352.

    PubMed  CAS  Google Scholar 

  52. Schmiedke TMJ, Stockl FW, Weber R, Sugisaki Y, Batsford SR, Vogt A: Histones have high affinity for the glomerular basement membrane: Relevance for immune complex formation in lupus nephritis. J Exp Med 1989;169:1879–1894.

    Google Scholar 

  53. Kramers C, Hylkema MN, van Bruggen MCJ, van de Lagemaat R, Dijkman HBPM, Assmann KJM, Smeenk RJT, Berden JHM: Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Invest 1994;94:568–577.

    PubMed  CAS  Google Scholar 

  54. Mohan C, Adams S, Stanik V, Datta SK: Nucleosome: A major immunogen for the pathogenic autoantibody-inducing T cells of lupus. J Exp Med 1993;177:1367–1381

    PubMed  CAS  Google Scholar 

  55. Ohnishi K, Ebling FM, Mitchell B, Singh RR, Hahn BH, Tsao BP: Comparison of pathogenic and nonpathogenic murine antibodies to DNA: Antigen binding and structural characteristics. Int Immunol 1994;6:817–827.

    PubMed  CAS  Google Scholar 

  56. Ghatak S, Sainis K, Owen FL, Datta SK: T cell receptor β and I-Aβ chain genes of normal SWR mice are linked with the development of lupus nephritis in NZB×SWR crosses. Proc Natl Acad Sci USA 1987;84:6850–6853.

    PubMed  CAS  Google Scholar 

  57. O'Keefe TL, Datta SK, Imanishi-Kari T: Cationic residues in pathogenic anti-DNA autoantibodies arise by mutations of a germline gene that belongs to a large VH gene subfamily. Eur J Immunol 1992;22: 619–624.

    PubMed  Google Scholar 

  58. Sainis K, Datta SK: CD4+ T cells lines with selective patterns of autoreactivity as well as CD4−/CD8−T helper cell lines augment the production of idiotypes shared by pathogenic anti-DNA autoantibodies in the NZB×SWR model of lupus nephritis. J Immunol 1988; 140:2215–2224.

    PubMed  CAS  Google Scholar 

  59. Adams S, Zordan T, Sainis K, Datta SK: T cell receptor Vβ genes expressed by IgG anti-DNA autoantibody inducing T cells in lupus nephritis. Forbidden receptors and double negative T cells. Eur J Immunol 1990;20:1435–1443.

    PubMed  CAS  Google Scholar 

  60. Adams S, Leblanc P, Datta SK: Junctional region sequences of T-cell receptor β chain genes expressed by pathogenic anti-DNA autoantibody-inducing T helper cells from lupus mice: Possible selection by cationic autoantigens. Proc Natl Acad Sci USA 1991;88:11271–11275

    PubMed  CAS  Google Scholar 

  61. Zauderer M, Natarajan K: Imprint of thymic selection on autoreactive repertoires. Immunol Rev 1990; 116:160.

    Google Scholar 

  62. Singer PA, McEvilly RJ, Balderas RS, Dixon FJ, Theofilopoulos AN: T-cell receptor alpha-cahin variable-region haplotypes of normal and autoimmune laboratory mouse strains. Proc Natl Acad Sci USA 1988;85: 7729–7733.

    PubMed  CAS  Google Scholar 

  63. Mao C, Osman GE, Adams S, Datta SK: T-cell receptor alpha-chain repertoire of pathogenic autoantibody-inducing T cells in lupus mice. J Immunol 1994;152:1462–1470.

    PubMed  CAS  Google Scholar 

  64. Rajagopalan S, Zordan T, Tsokos GC, Datta SK: Pathogenic anti-DNA autoantibody inducing T helper cell lines from patients with active lupus nephritis: Isolation of CD4−/−CD8-T helper cell lines that express the γ/δ T-cell receptor. Proc Natl Acad Sci USA 1990;87:7020–7024.

    PubMed  CAS  Google Scholar 

  65. Jorgensen JL, Esser U, Reay PA, Fazekas de St. Groth B, Davis MM: Mapping T cell receptor/peptide contacts by variant peptide immunization of single-chain transgenics. Nature 1992;355:224–230.

    PubMed  CAS  Google Scholar 

  66. Atkinson MJ, Bell DA, Singhal SK: A naturally occuring polyclonal B cell activator of normal and autoan tibody responses. J Immunol 1984; 135:2524–2533.

    Google Scholar 

  67. Datta SK, Rajagopalan S, O'Keefe TL, Ghatak S, Imanishi-Kari T: Pathogenic anti-DNA autoantibodies and pathogenic autoantibody-inducing T cells; in Bona CA, Kaushik A (eds.): Molecular Immunobiology of Self-REactivity. New York: Dekker 1992, pp. 133–153.

    Google Scholar 

  68. Rumore P, Steinman C: Endogenous circulating DNA in systemic lupus erythematosus: Occurrences as multimeric complexes bound to histones. J Clin Invest 1990;86:69–74.

    PubMed  CAS  Google Scholar 

  69. Fournie GJ, Lule J, Ducymes JM, Laval F, Deloble I, Vernier I, Pourat, JP: Plasma DNA in patients undergoing hemodialysis at hemofiltration: Cytolysis in artificial kidney is responsible for the release of DNA in circulation. Am J Nephrol 1989; 9:384–391.

    Article  PubMed  CAS  Google Scholar 

  70. Atanassov C, Briand JP, Bonnier D, Van Regenmortel MHV, Muller S: New Zealand white rabbits immunized with RNA-complexed total histones develop an autoimmune-like response. Clin Exp Immunol 1991;86:124–133.

    PubMed  CAS  Google Scholar 

  71. Rothfield NF, Stollar BD: The relation of immunoglobulin class, pattern of anti-nuclear antibody, and complement-fixing antibodies to DNA in sera from patients with systemic lupus erythematosus. J Clin Invest 1967;46:1785–1794.

    PubMed  CAS  Google Scholar 

  72. Burlingame RW, Rubin RL, Balderas, RS, Theofilopoulos AN: Genesis and evolution of anti-chromatin autoantibodies in murine lupus implicates immunzation with self antigen. J Clin Invest 1993;91:1687–1696.

    PubMed  CAS  Google Scholar 

  73. Burlingame RW, Boey ML, Starkebaum G, Rubin RL: The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest 1994;94:184–192.

    PubMed  CAS  Google Scholar 

  74. Jacob L, Viard JP, Allenet B, Anin MF, Slama FBH, Vandekerckhove J, Primo J, Markovits J, Jacob. F, Bach JF, LePecq JB, Louvard D: A monoclonal anti-double standed DNA autoantibody binds to a 94 kDa cell-surface protein on various cell types via nucleosomes or a DNa-histone complex. Proc Natl Acad Sci USA 1989;86:4669–4573.

    PubMed  CAS  Google Scholar 

  75. Bernstein KA, DiValerio R, Lefkowith JB: Glomerular binding activity in MRL Ipr serum consists of antibodies that bind to a DNA/histone/type IV collagen complex. J Immunol 1995;154:2424–2433.

    PubMed  CAS  Google Scholar 

  76. Cohen PL, Eisenberg RA: Ipr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991;9:243–269.

    PubMed  CAS  Google Scholar 

  77. Nemazee D, Burki K: Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody gene. Nature 1989;337: 562–566.

    PubMed  CAS  Google Scholar 

  78. Gleichmann E, van Elven EH, van der Veen JPW: A systemic lupus erythematosus (SLE) like disease in mice induced by abnormal T-B cell cooperation: Preferential formation of autoantibodies characteristics of SLE. Eur J Immunol 1982;12:152.

    PubMed  CAS  Google Scholar 

  79. Harley JB, Sestak AL, Willis LG, Fu SM, Hansen JA, Reichlin M: A model for disease heterogeneity in systemic lupus erythematosus: Relationships between histocompatibility antigens, autoantibodies, and lymphopenia or renal disease. Arthritis Rheum 1989;32:826–836.

    PubMed  CAS  Google Scholar 

  80. Tsokos GC, Balow JE: Cellular immune responses in systemic lupus erythematosus. Prog Allergy 1984; 35:93–161.

    PubMed  CAS  Google Scholar 

  81. Suenaga R, Abdou NI: Catomic and high affinity serum IgG anti-dsDNA antibodies in active lupus nephritis. clin Exp Immunol 1993;94:418–422.

    PubMed  CAS  Google Scholar 

  82. Suzuki N, Harada T, Mizushima Y, Sakane T: Possible pathogenic role of cationic anti-DNA autoantibodies in the development of nephritis in patients with systemic lupus erythematosus. J Immunol 1993;151: 1128–1136.

    PubMed  CAS  Google Scholar 

  83. Winkler TH, Fehr H, Kalden JR: Analysis of immunoglobulin variable region genes from human IgG anti-DNA hybridomas. Eur J Immunol 1992;22:1719–1728.

    PubMed  CAS  Google Scholar 

  84. Rajagopalan S, Mao C, Datta SK: Pathogenic anti-DNA autoantibody-inducing γ/δ T helper cells from patients with lupus nephritis express unusual T cell receptors. clin Immunol Immunopathol 1992;62: 344–350.

    PubMed  CAS  Google Scholar 

  85. Linker-Israeli M, Quisimoro FP, Horwitz DA: CD8+ lymphocytes from patients with systemic lupus erythematosus sustain, rather than suppress, spontaneous polyclona IgG production and synergize with CD4+ cells to support autoantibody synthesis. Arthritis Rheum 1990;33: 1216–1225.

    PubMed  CAS  Google Scholar 

  86. Utz U, Brooks JA, McFarland HF, Martin R, Biddison WE: Fleterogeneity of T-cell receptor α-chain CDR3 in myelin basic protein-specific T cell increases with severity of multiple sclerosis. Proc Natl Acad Sci USA 1994;91:5567–5571.

    PubMed  CAS  Google Scholar 

  87. Brendel V, Dohlman J, Blaidell BE, Karlin S: Very long charge runs in systemic lupus erythemtosus-associated autoantigens. Proc Natl Acad Sci USA 1991;88:1536–1540.

    PubMed  CAS  Google Scholar 

  88. Lanzavecchia A: Antigen-specific interaction between T and B cells. Nature 1985;314:537–539.

    PubMed  CAS  Google Scholar 

  89. Malynn BA, Wortis HH: Role of antigen-specific B cells in the induction of SRBC-specific T cell proliferation. J Immunol 1984;132:2253–2258.

    PubMed  CAS  Google Scholar 

  90. Rock KL, Benacerraf B, Abbas AK: Antigen presentation by hapten-specific B lymphocytes. J Exp Med 1984;160:1102–1113.

    PubMed  CAS  Google Scholar 

  91. Mamula MJ, Fatenejad S, Craft J: B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 1994; 152:1453–1461.

    PubMed  CAS  Google Scholar 

  92. Desai-Mehta A, Mao C, Rajagopalan S, Robinson T, Datta SK: Structure and specificity of T-cell receptors expressed by pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J Clin Invest 1995; 95:531–541.

    PubMed  CAS  Google Scholar 

  93. Lilley DMJ: HMG has DNA wrapped up. Nature 1992;357:282–283.

    PubMed  CAS  Google Scholar 

  94. Lake P, Mitchison NA: Regulatory mechanisms in the immune response to cell-surface antigens. Cold Spring Harbor Symp Quant Biol 1976;41:589–595.

    Google Scholar 

  95. Lehman P, Forsthuber T, Miller A, Sercarz E: Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358:155–157.

    Google Scholar 

  96. Kasibhatla S, Nalefski EA, Rao A: Simultaneous involvement of all six predicted antigen binding loops of the T cell receptor in recognition of the MHC/antigenic peptide complex. J Immunol 1993;151:3140–3151.

    PubMed  CAS  Google Scholar 

  97. Ganju RK, Smiley ST, Bajorath J, Novotny J, Reinherz EL: Similarity between fluorescein-specific T-cell receptor and antibody in chemical details of antigen recognition. Proc Natl Acad Sci USA 1992;89:11552–11556.

    PubMed  CAS  Google Scholar 

  98. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournie JJ: Stimulation of human γ/δ T cells by nonpeptidic mycobacterial ligands. Science 1994; 264:267–270.

    PubMed  CAS  Google Scholar 

  99. Carson DA: The specificity of anti-DNA antibodies in systemic lupus erythematosus. J Immunol 1991; 146:1–3.

    PubMed  CAS  Google Scholar 

  100. Tan EM: Anti-nuclear antibodies: Diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 1989;44:93–151.

    PubMed  CAS  Google Scholar 

  101. Freed AC, Hefeneider SH, Vedder C, Khaw K, Bakke AC, McCoy SL, Bennett RM: Partial cloning and expression of a cell-surface glycoprotein which binds DNA and nucleosomes (abstract). Arthritis Rheum 1994;37(suppl R5).

  102. Casciola-Rosen LA, Anhalt G, Rosen A: Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179:1317–1330.

    PubMed  CAS  Google Scholar 

  103. Desai DD, Krishnan MR, Swindle JT, Marion TN: Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J Immunol 1993; 151:1614–1626.

    PubMed  CAS  Google Scholar 

  104. Kanai Y, Takeda O, Kanai Y, Miura K, Kurosawa Y: Novel autoimmune phenomena induced in vivo by a new DNA binding protein Nuc: A study on MRL/n mice. Immunol Lett 1994;39:83–89.

    Google Scholar 

  105. Fredriksen K, Osei A, Sundsfjord A, Traavik T, Rekvig OP: On the biological origin of anti-dsDNA antibodies: Systemic lupus erythematosus related anti-dsDNA antibodies are induced by polyomavirus BK in lupus-prone (NZB x NZW)F1 hybrids, but not in normal mice. Eur J Immunol 1994;24:66–70.

    PubMed  CAS  Google Scholar 

  106. James JA, Gross T, Scofield RH, Harley JB: Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J Exp Med 1985;181:453–461.

    Google Scholar 

  107. Puccetti A, Madaio MP, Bellese G, Migliorini P: Anti-DNA antibodies bind to DNase I. J Exp Med 1995;181:1797–1804.

    PubMed  CAS  Google Scholar 

  108. Ando DG, Sercarz EE, Hahn BH: Mechanism of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model. J Immunol 1987;138:3185–3190.

    PubMed  CAS  Google Scholar 

  109. Sobel ES, Kakkanaiah VN, Kakkanaiah M, Cheek RL, Cohen PL, Eisenberg RA: T-B collaboration for autoantibody production in lpr mice is cognate and MHC-restricted. J Immunol 1994;152:6011–6016.

    PubMed  CAS  Google Scholar 

  110. Naiki M, Chiang BL, Cawley D, Ansari A, Rozzo SJ, Kotzin BL, Zlotnik A, Gershwin ME: Generation and characterization of cloned helper T cell lines for anti-DNA responses in NZB.H-2bm12 mice. J Immunol 1992;149:4109–4115.

    PubMed  CAS  Google Scholar 

  111. Portanova JP, Arndt RE, Kotzin BL: Selective production of autoantibodies in graft-versus-host induced and spontaneous murine lupus: Predominant reactivity with histone regions accessible in chromatin. J Immunol 1988;140:755.

    PubMed  CAS  Google Scholar 

  112. Klinman DM, Steinberg AD: Systemic autoimmune disease arises from polyclonal B cell activation. J Exp Med 1987;165:1755–1760.

    PubMed  CAS  Google Scholar 

  113. Reiniger L, Radaszkiewicz T, Kosco M, Melchers F, Rolnik AG: Development of autoimmune disease in SCID mice populated with longterm in vitro proliferating (NZB x NZW)F1 pre-B cells. J Exp Med 1992;176:1343–1353.

    Google Scholar 

  114. Merino R, Iwamoto M, Fossati L, Izui S: Polyclonal B cell activation arises from different mechanisms in lupus-prone (NZB x NZW)F1 and MRL/Mpj-lpr/lpr mice. J Immunol 1993;151:6509–6516.

    PubMed  CAS  Google Scholar 

  115. Noelle RJ, Ledbetter JA, Aruffo A: CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B cell activation. Immunol Today 1992;13:431.

    PubMed  CAS  Google Scholar 

  116. Clark EA, Ledbetter JA: How B and T cells talk to each other. Nature 1994;367:425–428.

    PubMed  CAS  Google Scholar 

  117. Roy M, Waldschmidt T, Aruffo A, Ledbetter JA, Noelle RJ: The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993;151:2497–2510.

    PubMed  CAS  Google Scholar 

  118. Banchereau J, Bazan F, Blanchard D, Briere F, Galizi JP, van Kooten C, Liu YJ, Rousset F, Saeland S: The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881–922.

    PubMed  CAS  Google Scholar 

  119. Lederman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, Chess L: Molecular interaction mediating T-B lymphocyte collaboration in human lymphoid follicles: Role of T cell-B cell activating molecule (5c8 antigen) and CD40 in contact-dependent help. J Immunol 1992;149:3817–3826.

    PubMed  CAS  Google Scholar 

  120. Spriggs MK, Armitage RJ, Stockbine L, Clifford KN, Macduff BM, Sato TA, Maliszewski CR, Fanslow WC: Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med 1992;176:1543–1550.

    PubMed  CAS  Google Scholar 

  121. Stamenkovic I, Clark EA, Seed B: A B lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 1989;8:1403–1410.

    PubMed  CAS  Google Scholar 

  122. Lederman S, Yellin MJ, Cleary AM, Pernis A, Inghirami G, Cohn LE, Covey LR, Lee JL, Rothman P, Chess L: T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J Immunol 1994;152:2163–2171.

    PubMed  CAS  Google Scholar 

  123. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan ICM: Mechanism of antigen driven selection in germinal centers. Nature 1989;342:929–931.

    PubMed  CAS  Google Scholar 

  124. Tsubata T, Wu J, Honjo T: B cell apoptosis induced by antigen receptor crosslinking is blocked by a T cell signal through CD40. Nature 1993;364:645–648.

    PubMed  CAS  Google Scholar 

  125. Rothstein TL, Wang JKM, Panka DJ, Foote LC, Wang Z, Stanger B, Cui H, Ju ST, Marshak-Rothstein A: Protection against Fas-dependent Th-1 mediated apoptosis by antigen receptor engagement in B cells. Nature 1995;374:163–165.

    PubMed  CAS  Google Scholar 

  126. Parry SL, Hasbold J, Holman M, Klaus GGB: Hypercross-linking surface IgM or IgD receptors on mature B cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J Immunol 1994;152:2821–2829.

    PubMed  CAS  Google Scholar 

  127. Ren CL, Morio T, Fu SM, Geha RS: Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cgamma2. J Exp Med 1994; 179:673–680.

    PubMed  CAS  Google Scholar 

  128. Faris M, Gaskin F, Parsons JT, Fu SM: CD40 signaling pathway: Anti-CD40 monoclonal antibody induces rapid dephosphorylation and phosphorylation of tyrosine-phosphorylated proteins including protein tyrosine kinase Lyn, Fyn, and Syk and the apperance of a 28-kD tyrosine phosphorylated protein. J Exp Med 1994;179:1923–1931.

    PubMed  CAS  Google Scholar 

  129. Wortis HH, Teutsch M, Higer M, Zheng J, Parker DC: B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B cell phenotypes. Proc Natl Acad Sci USA 1995;92:3348–3352.

    PubMed  CAS  Google Scholar 

  130. Lane PJL, Traunecker A, Hubele S, Inui S, Lanzavecchia A, Gray D: Activated human T cells express a ligand for the human B cell-associated antigen CD40, which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol 1992;22:2573–2578.

    PubMed  CAS  Google Scholar 

  131. Armitage RJ, Fanslow WC, Strockbine L, Sato KN, Clifford BM, MacDuff DM, Anderson SD, Gimple T, Davis-Smith CR, Maliszewski CR, Clark EA, Smith CA, Grabstein KH, Cosman D, Spriggs MK: Molecular and biological characterization of a murine ligand for CD40. Nature 1992;357:80–82.

    PubMed  CAS  Google Scholar 

  132. Graf D, Korthauer U, Mages HW, Senger G, Kroczek RA: Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol 1992; 22:3191–3194.

    PubMed  CAS  Google Scholar 

  133. Noelle RJ, Roy M, Shepherd DM, Stamencovic I, Ledbetter JA, Aruffo A: A novel ligand on activated helper T cells binds CD40 and transduces the signal for the cognate activation of B cells. Proc Natl Acad Sci USA 1992;89:6550–6554.

    PubMed  CAS  Google Scholar 

  134. Gauchat JF, Aubry JP, Mazzei G, Life P, Jomotte T, Elson G, Bonnefoy JY: Human CD40-ligand: Molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett 1993;315:259–266.

    PubMed  CAS  Google Scholar 

  135. Mohan C, Shi Y, Laman JD, Datta SK: Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 1995;154:1470–1480.

    PubMed  CAS  Google Scholar 

  136. Van den Eertwegh AJM, Noelle RJ, Roy M, Shepherd DM, Aruffo JA, Ledbetter JA, Boersma WJA, Classen E: In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I: In vivo expression of CD40 ligand, cytokines and antibody production delineates sites of cognate T-B interactions. J Exp Med 1993;178:1555.

    PubMed  Google Scholar 

  137. Foy TM, Shepherd DM, Durie FH, Aruffo A, Ledbetter JA, Noelle RJ: In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. II: Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39. J Exp Med 1993;178:1567–1575.

    PubMed  CAS  Google Scholar 

  138. Castle BE, Kishimoto K, Stearns C, Brown ML, Kehry MR: Regulation of expression of the ligand for CD40 on T helper lymphocytes. J Immunol 1993;151:1777–1788.

    PubMed  CAS  Google Scholar 

  139. Yellin MJ, Sippel K, Inghirami G, Covey LR, Lee JJ, Sinning J, Clark EA, Chess L, Lederman S: CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. J Immunol 1994; 152:598–608.

    PubMed  CAS  Google Scholar 

  140. van Kooten CV, Gaillard C, Gallizi JP, Hermann P, Fossiez F, Banchereau J, Blanchard D: B cells regulate expression of CD40 ligand on activated T cells by lowering the mRNA level and through the release of soluble CD40. Eur J Immunol 1994;24:787–792.

    PubMed  Google Scholar 

  141. Duri FH, Fava RA, Foy TM, Aruffo A, Ledbetter JA, Noelle RJ: Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 1993; 261:1328–1330.

    Google Scholar 

  142. Ranheim EA, Kipps TJ: Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925–935.

    PubMed  CAS  Google Scholar 

  143. Klaus SJ, Pinchuk LM, Ochs HD, Law CL, Fanslow WC, Armitage RJ, Clark EA: Costimulation through CD28 enhances T cell-dependent B cell activation via CD40-CD40L interaction. J Immunol 1994;152:5643–5652.

    PubMed  CAS  Google Scholar 

  144. de Boer M, Kasran A, Kwekkeboom J, Walter H, Vandenberghe P, Ceuppens JL: Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, IL-4 secretion and efficient help for antibody production by B cells. Eur J Immunol 1993;23:3120–3125.

    PubMed  Google Scholar 

  145. Hill A, Chapel H: X-linked immunodeficiency: The fruits of cooperation. Nature 1993;361:494.

    PubMed  CAS  Google Scholar 

  146. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ: gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 1994;180:157–163.

    PubMed  CAS  Google Scholar 

  147. Splawski JB, Fu SM, Lipsky PE: Immunoregulatory role of CD40 in human B cell differentiation. J Immunol 1993;150:1276–1285.

    PubMed  CAS  Google Scholar 

  148. Gray D, Dullforce P, Jainandunsing S: Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med 1994;180:141–155.

    PubMed  CAS  Google Scholar 

  149. Singh RR, Kumar V, Ebling FM, Southwood S, Sette A, Sercarz EE, Hahn BH: T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine SLE. J Exp Med 1995, in press.

  150. Wofsy D, Seaman WE: Successful treatment of autoimmunity in NZB-NZW F: mice with monoclonal antibody to L3T4. J Exp Med 1985;161:378–391.

    PubMed  CAS  Google Scholar 

  151. Fredrickson GG, Basch RS: L3T4 antigen expression by hemopoietic precursor cells. J Exp Med 1989; 169:1473–1478.

    Google Scholar 

  152. Finck BK, Linsley PS, Wofsy D: Treatment of murine lupus with CTLA4lg. Science 1994;265:1225–1227.

    PubMed  CAS  Google Scholar 

  153. Mueller DL, Jenkins MJ, Schwartz RH: Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445–480.

    PubMed  CAS  Google Scholar 

  154. DeMagistris MT, Alexander J, Coggeshall M, Altman A, Gaeta FCA, Grey HM, Sette A: Antigen analog-major histocompatibility complexes act as antagonists at the T cell receptor. Cell 1992;68:625–634.

    CAS  Google Scholar 

  155. Sloan-Lancaster J, Evavold BD, Allen PM: Th2 cell clonal anergy as a consequence of partial activation. J Exp Med 1994;180:1195–1205.

    PubMed  CAS  Google Scholar 

  156. Brestcher PA, Cohn M: A theory of self discrimination. Science 1970; 169:1042–1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S.K., Mohan, C. & Desai-Mehta, A. Mechanisms of the pathogenic autoimmune response in lupus: Prospects for specific immunotherapy. Immunol Res 14, 132–147 (1995). https://doi.org/10.1007/BF02918173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918173

Key Words

Navigation