Skip to main content

Advertisement

Log in

The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Many, if not all, solid tumors are characterized by a T cell infiltrate, usually consisting of CD4+ and CD8+ T cells. Characterization of both subsets of tumor-infiltrating lymphocytes (TIL) have shown that each population can be divided into tumor-specific and tumor-nonspecific T cells. A small proportion of tumor-specific CD4+ TIL can directly lyse tumor cells in an HLA class I- or II-restricted fashion. The majority of tumor-specific CD4+ TIL, however, recognize tumor antigens presented on HLA class II molecules by antigen-presenting cells (APC). At the same time, APC in the tumor environment express elevated levels of heat shock antigen (Hsp) 70 (and perhaps other antigens) that can be specifically recognized by tumor-nonspecific CD4+ TIL when presented by HLA class II. Functionally, CD4+ TIL cells can be distinguished into Th0 (production of IL-2, IL-4, and IFN-γ), Th1 (IL-2 and IFN-γ), and Th2 (IL-4). In addition, stressed CD4+ TIL have the ability to produce the growth factors heparin binding epidermal growth factor and basic fibroblast growth factor that support tumor growth. Since the efficacy of an antitumor immune response is codetermined by the net effect of stimulatory and inhibitory cytokines, a detailed understanding of the developmental pathways of CD4+ TIL subsets and their interactions is critical for the design of clinical protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linehan DC, Peoples GE, Hess DT, Summerhayes IC, Parikh AS, Goedegebuure PS, Eberlein TJ: In vitro stimulation of ovarian tumor associated lymphocytes with a peptide derived from HER2/neu induces cytotoxicity against autologous tumor. Surg Oncol 1995;4/1:41–50.

    Article  Google Scholar 

  2. Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW, Grey HM, Sette A, Serra HM: Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci 1994;91:2105–2109.

    Article  PubMed  CAS  Google Scholar 

  3. Linehan DC, Goedegebuure PS, Eberlein TJ: Vaccine therapy for cancer. A review. Ann Surg Oncol, in press.

  4. Vose BM: Quantitation of proliferative and cytotoxic precursor cells directed against human tumours: Limiting dilution analysis in peripheral blood and at the tumor site. Int J Cancer 1982;30:135–142.

    Article  PubMed  CAS  Google Scholar 

  5. Schoof DD, Selleck C, Massaro AF, Jung SE, Eberlein TJ: Activation of human tumor-infiltrating lymphocytes by monoclonal antibodies directed to the CD3 complex. Cancer Res 1990;50:1138–1143.

    PubMed  CAS  Google Scholar 

  6. Goedegebuure PS, Lee K-Y, Matory YL, Peoples GE, Yoshino I, Eberlein TJ: Classification of CD4+ T helper cell clones in human melanoma. Cell Immunol 1994;156:170–179.

    Article  PubMed  CAS  Google Scholar 

  7. Goedegebuure PS, Douville LM, Li H, Richmond GC, Schoof DD, Scavone M, Everlein TJ: Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: A pilot study. J Clin Oncol, in press

  8. Eberlein TJ, Peoples GP, Yoshino I, Lee K-Y, Burger UL, Li H, Douville L, Goedegebuure PS: Anti-CD3 activation of tumor-infiltrating lymphocytes; in Chang AE, Shu S (eds): Immunotherapy of Cancer with Sensitized T Lymphocytes. Austin, Landes, 1994, pp 15–34.

    Google Scholar 

  9. Massaro AF, Schoof DD, Rubinstein A, Jung SE, Wilson RE, Eberlein TJ: Solid-phase anti-CD3 antibody activation of murine tumor-infiltrating lymphocytes. Cancer Res 1990;50:2587–2592.

    PubMed  CAS  Google Scholar 

  10. Unanue ER, Allen PM: The basis of the immunoregulatory role of macrophages and other accessory cells. Science 1987;236:551–557

    Article  PubMed  CAS  Google Scholar 

  11. Guerry D, Alexander MA, Elder DE, Heleyn MF: Interferon-gamma regulates the T cell response to precursor nevi and biologically early mealnoma. J Immunol 1987;139:305–312.

    PubMed  CAS  Google Scholar 

  12. Radrizzani M, Benedetti B, Castelli C, Longo A, Ferrara GB, Herlyn M, Parmiani G, Fossati G: Human allogeneic melanoma-reactive T-helper lymphocyte clones: Functional analysis of lymphocyte-melanoma interactions. Int J Cancer 1991;49:823–830.

    Article  PubMed  CAS  Google Scholar 

  13. Jaraquemada D, Marti M, Long EO: An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J Exp Med 1990;172:947–954.

    Article  PubMed  CAS  Google Scholar 

  14. Braakman E, Goedegebuure PS, Vreugdenhil RJ, Segal DM, Shaw S, Bolhuis RLH: ICAM-1 melanoma cells are relatively resistant to CD3-mediated T cell lysis. Int J Cancer 1990;46:475–480.

    Article  PubMed  CAS  Google Scholar 

  15. Goedegebuure PS, Braakman E, Segal DM, Vreugdenhil RJ, Bolhuis RLH: Lymphocyte leukocyte function-associated antigen 1 interacting with target cell intercellular adhesion molecule 1 co-activates cytolysis triggered via CD16 or the receptor involved in major histocompatibility antigen-unrestricted lysis. Int Immunol 1990;2:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  16. Townsend SE, Allison JP: Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993;259:368–370.

    Article  PubMed  CAS  Google Scholar 

  17. Chen L, Linsley PS, Hellstrom KE: Costimulation of T cells for tumor immunity. Immunol Today 1993; 14:483–486.

    Article  PubMed  CAS  Google Scholar 

  18. Goedegebuure PS, Harel W, LeMay LG, Kan-Mitchell J, Mitchell MS: Cytotoxic CD4+ lymphocyte clones reactive with melanoma: The role of HLA and accessory molecules. Vaccine Res 1993;2/4:249–261.

    Google Scholar 

  19. LeMay LG, Kan-Mitchell J, Goedegebuure PS, Harel W, Mitchell MS: Human melanoma-specific CD4+ HLA class I-restricted cytotoxic T cell clones: Requirements for long-term assays and upregulation of antigens with interferon-gamma. Cancer Immunol Immunother 1993;37:187–194.

    Article  PubMed  CAS  Google Scholar 

  20. Harel W, Goedegebuure PS, LeMay LG, Huang XO, Kan-Mitchell J, Mitchell MS: Melanoma-specific lysis by cloned CD4+ and CD8+ cells from actively immunized melanoma patients. Vaccine Res 1993;2/1:41–53.

    Google Scholar 

  21. Wang P, Vanky F, Klein E: MHC class-I-restricted auto-tumor-specific CD4+CD8- T-cell clones established from autologous mixed lymphocyte-tumor culture (MLTC). Int J Cancer 1992;51:962–967.

    Article  PubMed  CAS  Google Scholar 

  22. Gaczynska M, Rock KL, Goldberg AL: γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 1993; 365:264–267.

    Article  PubMed  CAS  Google Scholar 

  23. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RF: Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.

    PubMed  CAS  Google Scholar 

  24. Romagnani S: Induction of Th1 and Th2 responses: A key role for the ‘natural’ immune response? Immunol Today 1992;13:379–381.

    Article  PubMed  CAS  Google Scholar 

  25. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR: Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991;254:279–282.

    Article  PubMed  CAS  Google Scholar 

  26. Mosmann TR, Coffman RL: TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties Ann Rev Immunol 1989;7:145–173.

    Article  CAS  Google Scholar 

  27. Palliard X, De Waal R, Yssel H, Blanchard D, Chrétien I, Abrams J, De Vries J, Spits H: Simultaneous production of IL-2, IL-4, and IFN-γ by activated human CD4+ and CD8+ T cell clones. J Immunol 1988;141:849–855.

    Google Scholar 

  28. Schoof DD, Terashima Y, Peoples GE, Goedegebuure PS, Raven Andrews JV, Richie JP, Eberlein TJ: CD4+ T cell clones isolated from human renal cell carcinoma possess the functional characteristics of Th2 helper cells. Cell Immunol 1993; 150:114–123.

    Article  PubMed  CAS  Google Scholar 

  29. Marx J: The T cell receptor begins to reveal its many facets. Science 1995; 267:459–460.

    Article  PubMed  CAS  Google Scholar 

  30. Yssel H, Johnson KE, Schneider PV, Widemann J, Terr A, Kastelein R, De Vries JE: T cell activation-inducing epitopes of the house dust mite allergenDer p I. J Immunol 1992;148:738–745.

    PubMed  CAS  Google Scholar 

  31. Wolff H, Novak T, Shaw A, Dianzani U, Janeway CA Jr: High levels of IL-2 alter signal transduction in cloned IL-4-producing CD4 T cells. J Immunol 1992;149:2996–3002.

    PubMed  CAS  Google Scholar 

  32. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ: Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neuderived peptide. Proc Natl Acad Sci 1995;92:432–436.

    Article  PubMed  CAS  Google Scholar 

  33. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA: Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci 1994;91:3515–3519.

    Article  PubMed  CAS  Google Scholar 

  34. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, Coulie P, Boon T: The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993;178:489–495.

    Article  PubMed  CAS  Google Scholar 

  35. Vaupal P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 1989;49:6449–6465

    Google Scholar 

  36. DeNagel DC, Pierce SK: Heat shock proteins in immune responses Crit Rev Immunol 1993;13/1:71–81

    Google Scholar 

  37. Benjamin IJ, Kroger B, Williams RS: Activation of heat shock protein synthesis by human monocytesmacrophages. Proc Natl Acad Sci 1990;87:6263–6267

    Article  PubMed  CAS  Google Scholar 

  38. Craig EA: Chaperones: Helpers along the pathways to protein folding. Science 1993;260:1902–1903.

    Article  PubMed  CAS  Google Scholar 

  39. Shinnick TM: Heat shcok proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 1991;167:145–160.

    PubMed  CAS  Google Scholar 

  40. Yoshino I, Goedegebuure PS, Peoples GE, Lee K-Y, Eberlein TJ: Human tumor-infiltrating CD4+ T cells react to B cell lines expressing heat shock protein 70. J Immunol 1994;153:4149–4158.

    PubMed  CAS  Google Scholar 

  41. Powrie F, Menon S, Coffman RL: Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur J Immunol 1988;141:849–855.

    Google Scholar 

  42. Lee K-Y, Goedegebuure PS, Linehan DC, Eberlein TJ: Immunoregulatory effects of CD4+ TIL in melanoma. Surgery 1995;117:365–372.

    Article  PubMed  CAS  Google Scholar 

  43. Burger UL, Chang MP, Goedeebuure PS, Eberlein TJ: Tumor eradication by tumor-infiltrating lymphocytes and rIL-2 requires the recruitment of host CD8+T cells. Surgery 1995;117:325–333.

    Article  PubMed  CAS  Google Scholar 

  44. Burger U, Chang MP, Goedegebuure PS, Eberlein TJ: Changes in host T cell concentrations but not in donor TIL concentrations at the tumor site following adoptive immunotherapy. Surg Forum 1994;45:513–515.

    Google Scholar 

  45. Matory YL, Chen M, Goedegebuure PS, Eberlein TJ: Anti-tumor effects and tumor immunogenicity following IL2 or IL4 cytokine gene transfection of three mouse mammary tumors. Ann Surg Oncol, in press.

  46. Matory YL, Chen M, Dorfman DM, Goedegebuure PS, Williams A, Eberlein TJ: Anti-tumor activity of three mouse mammary cancer cell lines following interferon-γ gene transfection. Surgery, in press

  47. Peoples GE, Blotnick S, Takahashi K, Freeman MR, Klagsbrun M, Eberlein TJ: T lymphocytes that infiltrate tumors and atherosclerotic plaques produce hb-EGF and bFGF: A pathologic role. Proc Natl Acad Sci, in press.

  48. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M: T lymphocytes synthesize and export vascular cell heparin-binding EGF-like growth factor (HB-EGF) and basic growth factor (bFGF); differential production and release by CD4+ and CD8+ cells. Proc Natl Acad Sci 1994;91:2890–2894.

    Article  PubMed  CAS  Google Scholar 

  49. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M: A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991;251: 936–939.

    Article  PubMed  CAS  Google Scholar 

  50. Besner G, Higashiyama S, Klagsbrun M: Isolation and characterization of a macrophage-derived heparin-binding growth factor. Cell Regul 1990;1:811–819

    PubMed  CAS  Google Scholar 

  51. Higashiyama S, Abraham JA, Klagsbrun M: Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: Dependence on interactions with cell surface heparan sulfate. J Cell Biol 1993; 122:933–940.

    Article  PubMed  CAS  Google Scholar 

  52. Marikovsky M, Breuing K, Liu PY, Eriksson E, Higashiyama S, Farber P, Abraham JA, Klagsbrun M: Appearance of heparin-binding-EGF (HB-EGF) mRNA in wound fluid as a response to injury. Proc Natl Acad Sci 1993;90:3889–3893.

    Article  PubMed  CAS  Google Scholar 

  53. Powell PP, Klagsbrun M, Abraham JA, Jones RC: Eosinophils expressing heparin-binding EGF-like growth factor mRNA localize around lung microvessels in pulmonary hypertension. Am J Pathol 1993;143:784–793.

    PubMed  CAS  Google Scholar 

  54. Folkman J, Klagsbrun M: Angiogenic factors. Science 1987;235:442–447.

    Article  PubMed  CAS  Google Scholar 

  55. Birgess W, Maciag T: The heparinbinding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989;58:575–606.

    Article  Google Scholar 

  56. Kuchroo VK, Prabhu Das M, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 1995;80:707–718.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedegebuure, P.S., Eberlein, T.J. The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors. Immunol Res 14, 119–131 (1995). https://doi.org/10.1007/BF02918172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918172

Key Words

Navigation