Immunologic Research

, Volume 7, Issue 2, pp 136–151 | Cite as

Studies of surface immunoglobulin-dependent B cell activation

  • John G. Monroe
  • Vicki L. Seyfert
Cellular Immunology

Summary

Studies from a number of laboratories have firmly established the potential of surface immunoglobulin-generated signals in B lymphocyte activation. While clearly there are multiple ways of activating B lymphocytes, some of which may not involve surface immunoglobulin, it is clear that crosslinking of surface immunoglobulin whether by antigen or anti-receptor antibody can generate signals relevant to B cell activation. Although considerable insight into the mechanism of transduction of mIg-generated signals across the plasma membrane has been realized, a molecular explanation for linking inositol phospholipid hydrolysis to changes within the cytoplasm and nucleus of the B cells is still speculative. A more rigorous definition of the PKC and calcium components of the mIg signal transduction pathway are critical for a thorough understanding of the mechanism of signal transduction by this receptor. The use of tumor cell models allowing selection of mutants within the signalling pathway(s) will be invaluable to fully defining the critical molecular and biochemical events involved in B cell activation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goding, J.W.: Allotypes of IgM and IgD receptors in the mouse: a probe for lymphocyte differentiation. Contemp. Top. Immunobiol.8: 203 (1978).PubMedGoogle Scholar
  2. 2.
    Monroe, J.G.; Havran, W.L.; Cambier, J.C.: B lymphocyte activation: entry into cell cycle is accompanied by decreased expression of IgD but not IgM. Eur. J. Immunol.13: 208–213 (1983).PubMedGoogle Scholar
  3. 3.
    Tucker, P.W.; Cheng, H.-L.; Richards, J.E.; Fitzmaurice, L.; Muchinski, J.F.; Blattner, F.R.: Genetic aspects of IgD expression. III. Functional implications of the sequence and organization of the Cdelta gene. Ann. N.Y. Acad. Sci.399: 26–38 (1982).PubMedGoogle Scholar
  4. 4.
    Sieckmana, D.G.: The use of anti-immunoglobulins to induce a signal for cell division in B lymphocytes via their membrane IgM and IgD. Immunol. Rev.52: 181–208 (1980).Google Scholar
  5. 5.
    Parker, D.C.: Induction and suppression of polyclonal antibody responses by anti-Ig reagents and antigen-nonspecific helper factors: a comparison of the effects of anti-Fab, anti-IgM, and anti-IgD on murine B cells. Immunol. Rev.52: 115–138 (1980).PubMedGoogle Scholar
  6. 6.
    Cambier, J.C.; Monroe, J.G.: B cell activation. V. Differentiation signaling a B cell membrane depolarization, increased I-A expression, Go to G1 transition, and thymidine uptake by anti-IgM and anti-IgD antibodies. J. Immun.133: 576–581 (1984).PubMedGoogle Scholar
  7. 7.
    Chen, Z.Z.; Coggeshall, K.M.; Cambier, J.C.: Translocation of protein kinase C during membrane immunoglobulin-mediated transmembrane signaling in B lymphocytes. J. Immun.136: 2300–2304 (1986).PubMedGoogle Scholar
  8. 8.
    Mizuguchi, J.; Tsang, W.; Morrison, S.L.; Beaven; Paul, W.E.: Membrane IgM, IgD, and IgG act as signal transmission molecules in a series of B lymphomas. J. Immun.137: 2162–2167 (1986).PubMedGoogle Scholar
  9. 9.
    Coutinho, A.; Moller, G.: Immune activation of B cells: evidence for ‘one nonspecific signal’ not delivered by the Ig receptors. Scand. J. Immunol.3: 133–146 (1974).PubMedGoogle Scholar
  10. 10.
    Coutinho, A.: The theory of the ‘one nonspecific signal’ model for B cell activation. Transplant. Rev.23: 49–65 (1975).PubMedGoogle Scholar
  11. 11.
    Cammisuli, S.; Henry, C.; Wofsy, L.: Role of membrane receptors in the induction of an in vitro secondary anti-hapten response. I. Differentiation of B memory cells to plasma cells is independent of antigen-immunoglobulin receptor interaction. Eur. J. Immunol.8: 656–662 (1978).PubMedGoogle Scholar
  12. 12.
    Cammisuli, S.; Henry, C.: Role of membrane receptors in the induction of an in vitro secondary anti-hapten response. II. Antigen-immunoglobulin receptor interaction is not required for B memory cell proliferation. Eur. J. Immunol.8: 662–666 (1978).PubMedGoogle Scholar
  13. 13.
    Tony, H.-P.; Phillips, N.E.; Parker, D.C.: Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J. exp. Med.162: 1695–1708 (1985).PubMedGoogle Scholar
  14. 14.
    Leclercq, L.; Cambier, J.C.; Mishal, Z.; Julius, M.H.; Theze, J.: Supernatant from a cloned helper T cell stimulates most small resting B cells to undergo increased IA expression, blastogenesis, and progression through cell cycle. J. Immun.136: 539–545 (1986).PubMedGoogle Scholar
  15. 15.
    Clayberger, C.; DeKruyff, R.H.; Fay, R.; Cantor, H.: Identification of a novel B cell stimulating factor produced by a cloned dendritic cell. Proc. natn. Acad. Sci. USA82: 183 (1985).Google Scholar
  16. 16.
    Clayberger, C.; DeKruyff, R.H.; Fay, R.; Pavlakis, M.; Cantor, H.: Immunoregulation of T dependent responses by a cloned dendritic cell. J. Immun.133: 1174 (1984).PubMedGoogle Scholar
  17. 17.
    Julius, M.H.; von Boehmer, H.; Sidman, C.L.: Dissociation of two signals required for activation of resting B cells. Proc. natn. Acad. Sci. USA79: 1989–1993 (1982).Google Scholar
  18. 18.
    Andersson, J.; Schreier, M.H.; Melchers, F.: T-cell dependent B-cell stimulation is H-2 restricted and antigen dependent only at the resting B-cell level. Proc. natn. Acad. Sci. USA77: 1612–1616 (1980).Google Scholar
  19. 19.
    Schreier, M.H.; Andersson, J.; Lernhardt, W.; Melchers, F.: Antigen-specific T-helper cells stimulate H-2-compatible and H-2-incompatible B-cell plasts polyclonally. J. exp. Med.151: 194–203 (1980).PubMedGoogle Scholar
  20. 20.
    Andersson, J.; Melchers, F.: T cell-dependent activation of resting B cells: requirement for both nonspecific unrestricted and antigen-specific Ia-restricted soluble factors. Proc. natn. Acad. Sci. USA78: 2497–2501 (1981).Google Scholar
  21. 21.
    LoCascio, N.J.; Haughton, G.; Arnold, L.W.; Corley, R.B.: Role of cell surface immunoglobulin in B-lymphocyte activation. Proc. natn. Acad. Sci. USA81: 2466–2469 (1984).Google Scholar
  22. 22.
    Sell, S.; Gell, P.G.H.: Studies on rabbit lymphocytes in vitro. I. Stimulation of blast transformation with an anti-allotypic serum. J. exp. Med.122: 423–439 (1965).PubMedGoogle Scholar
  23. 23.
    Primi, D.; Lewis, G.K.; Goodman, J.W.: The role of immunoglobulin receptors and T cell mediators in B lymphocyte activation. I. B cell activation by anti-immunoglobulin and anti-idiotype reagents. J. Immun.125: 1286–1292 (1980).PubMedGoogle Scholar
  24. 24.
    Rosenberg, J.S.; Feldman, J.D.: Activation of rat B lymphocytes. I. Characterization of anti-immunoglobulin responses and isotype density of rat B cells. J. Immun.128: 651–655 (1982).PubMedGoogle Scholar
  25. 25.
    Zitron, I.M.; Clevinger, B.L.: Regulation of murine B cells through surface immunoglobulin. I. Monoclonal anti-delta antibody that induces allotype-specific proliferation. J. exp. Med.152: 1135–1146 (1980).PubMedGoogle Scholar
  26. 26.
    Pure, E.; Vitetta, E.: Induction of murine B cell proliferation by insolubilized anti-immunoglubulins. J. Immun.125: 1240–1242 (1980).PubMedGoogle Scholar
  27. 27.
    DeFranco, A.L.; Raveche, E.S.; Asofsky, R.; Paul, W.E.: Frequency of B lymphocytes responsive to anti-immunoglobulin. J. exp. Med.155: 1523–1536 (1982).PubMedGoogle Scholar
  28. 28.
    Melchers, F.; Andersson, J.; Lernhardt, W.; Schreier, M.H.: Roles of surface-bound immunoglobulin molecules in regulating the replication and maturation to immunoglobulin secretion of B lymphocytes. Immunol. Rev.52: 89–114 (1980).PubMedGoogle Scholar
  29. 29.
    Cooper, M.D.; Kearney, J.F.; Gathings, W.E.; Lawton, A.R.: Effects of anti-Ig antibodies on the development and differentiation of B cells. Immunol. Rev.52: 29–53 (1980).PubMedGoogle Scholar
  30. 30.
    Braun, J.; Unanue, E.R.: B lymphocyte biology studies with anti-Ig antibodies. Immunol. Rev.52: 3–28 (1980).PubMedGoogle Scholar
  31. 31.
    Mond, J.J.; Segal, E.; Kung, J.; Finkleman, F.D.: Increased expression of I-region-associated antigen (Ia) on B cells after cross-linking of surface immunoglobulin. J. Immun.127: 881–886 (1981).PubMedGoogle Scholar
  32. 32.
    Monroe, J.G.; Cambier, J.C.: B cell activation. III. B cell plasma membrane depolarization and hyper-Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled. J. exp. Med.158: 1589–1599 (1983).PubMedGoogle Scholar
  33. 33.
    Parker, D.C.; Wadsworth, D.C.; Schneider, G.B.: Activation of murine B lymphocytes by anti-immunoglobulin is an inductive signal leading to immunoglobulin secretion. J. exp. Med.152: 138–150 (1980).PubMedGoogle Scholar
  34. 34.
    DeFranco, A.L.; Raveche, E.S.; Paul, W.E.: Separate control of B lymphocyte early activation and proliferation in response to anti-IgM antibodies. J. Immun.135: 87–94 (1985).PubMedGoogle Scholar
  35. 35.
    Cambier, J.C.; Monroe, J.G.; Neale, M.J.: Definition of conditions that enable antigen-specific activation of the majority of isolated trinitrophenol-binding B cells. J. exp. Med.156: 1635–1649 (1982).PubMedGoogle Scholar
  36. 36.
    Snow, E.C.; Fetherston, J.D.; Zimmer, S.: Induction of the c-myc protooncogene after antigen binding to hapten-specific B cells. J. exp. Med.164: 944–949 (1986).PubMedGoogle Scholar
  37. 37.
    Coughlin, S.R.; Lee, W.M.F.; Williams, P.W.; Giels, G.M.; Williams, L.T.: C-myc gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell43: 243–251 (1985).PubMedGoogle Scholar
  38. 38.
    Reed, J.C.; Nowell, P.C.; Hoover, R.G.: Regulation of c-myc mRNA levels in normal human lymphocytes by modulators of cell proliferation. Proc. natn. Acad. Sci. USA82: 4221–4224 (1985).Google Scholar
  39. 39.
    Kaibuchi, K.; Tsuda, T.; Kikuchi, A.; Tanimoto, T.; Yamashita, T.; Takai, Y.: Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J. biol. Chem.261: 1187–1192 (1985).Google Scholar
  40. 40.
    Armelin, H.A.; Armelin, M.C.S.; Kelly, K.; Stewart, T.; Leder, P.; Cochran, B.H.; Stiles, C.D.: Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature, Lond.310: 655–660 (1984).Google Scholar
  41. 41.
    Krieger, J.I.; Grammer, S.F.; Grey, H.M.; Chesnut, R.W.: Antigen presentation by splenic B cells: resting B cells are ineffective, whereas activated B cells are effective accessory cells for T cell responses. J. Immun.135: 2937–2945 (1985).PubMedGoogle Scholar
  42. 42.
    Monroe, J.G.; Cambier, J.C.: Level of mIa expression on mitogen-stimulated murine B lymphocytes is dependent on position in cell cycle. J. Immun.130: 626–631 (1983).PubMedGoogle Scholar
  43. 43.
    Roehm, N.W.; Leibson, H.J.; Zlotnik, A.; Kappler, J.; Marrack, P.; Cambier, J.C.: Interleukin-induced increase in Ia expression by normal mouse B cells. J. exp. Med.160: 679–694 (1984).PubMedGoogle Scholar
  44. 44.
    Singer, A.; Morrissey, P.J.; Hathcock, K.S.; Ahmed, A.; Scher, I.; Hodes, R.J.: Role of the major histocompatibility complex in T cell activation of B cell subpopulation. Lyb-5+ and Lyb-5- B cell subpopulation differ in their requirement for major histocompatibility complex-restricted T cell recognition. J. exp. Med.154: 501 (1981).PubMedGoogle Scholar
  45. 45.
    Mond, J.J.: Use of the T lymphocyte regulated type 2 antigens for the analysis of responsiveness of Lyb-5+ and Lyb-5- B lymphocytes to T lymphocyte derived factors. Immunol. Rev.64: 99 (1982).PubMedGoogle Scholar
  46. 46.
    Pozzan, T.; Arslan, P.; Tsien, R.Y.; Rink, T.J.: Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol.94: 335 (1982).PubMedGoogle Scholar
  47. 47.
    Ransom, J.T.; Digiusto, D.L.; Cambier, J.C.: Single cell analysis of calcium mobilization in anti-immunoglobulin-stimulated B lymphocytes. J. Immun.136: 54–57 (1986).PubMedGoogle Scholar
  48. 48.
    Tsien, R.Y.; Pozzan, T.; Rink, T.J.: Calcium homeostatis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescence indicator. J. Cell Biol.94: 325 (1982).PubMedGoogle Scholar
  49. 49.
    Maino, V.C.; Hayman, M.J.; Crumpton, M.J.: Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens. Biochem. J.146: 247–252 (1975).PubMedGoogle Scholar
  50. 50.
    Nishizuka, Y.: Turnover of inositol phospholipids and signal transduction. Science225: 1365–1370 (1984).PubMedGoogle Scholar
  51. 51.
    Dittmer, J.C.; Dawson, R.M.C.: The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain. Biochem. J.81: 535–540 (1961).PubMedGoogle Scholar
  52. 52.
    Brockerhoff, N.; Ballou, C.: The structure of the phosphoinositide complex of beef brain. J. biol. Chem.236: 1907–1911 (1961).Google Scholar
  53. 53.
    Kurosawa, M.; Parker, C.W.: A phosphatidylinositol kinase in rat mast cell granules. J. Immun.136: 616–622 (1986).PubMedGoogle Scholar
  54. 54.
    Kai, M.; Salway, J.G.; Michell, R.H.; Hawthorne, J.N.: The biosynthesis of triphosphinositide by rat brain in vitro. Biochem. biophys. Res. Commun.22: 370–375 (1966).Google Scholar
  55. 55.
    Michell, R.H.: Inositol phospholipids in membrane function. Trends biochem. Sci.6: 128–131 (1979).Google Scholar
  56. 56.
    Hokin, M.R.; Hokin, L.E.: Enzyme secretion and the incorporaiton of 32P into phospholipids of pancreas slices. J. biol. Chem.203: 967–977 (1953).PubMedGoogle Scholar
  57. 57.
    Abdel-Latif, A.A.; Akhtar, R.A.; Hawthorne, J.N.: Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]-phosphate. Biochem. J.162: 61–73 (1977).PubMedGoogle Scholar
  58. 58.
    Downes, P.; Michell, R.H.: Phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate: lipids in search of a function. Cell Calcium3: 467–502 (1982).PubMedGoogle Scholar
  59. 59.
    Agranoff, B.W.; Murthy, P.; Sequin, E.B.: Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. biol. Chem.258: 2076–2078 (1983).PubMedGoogle Scholar
  60. 60.
    Berridge, M.J.; Dawson, R.M.C.; Downes, C.P.; Heslop, J.P.; Irvine, R.F.: Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J.212: 473–482 (1983).PubMedGoogle Scholar
  61. 61.
    Fisher, S.K.; van Rooijen, L.A.A.; Agranoff, B.W.: Renewed interest in the polyphosphoinositides. Trends biochem. Sci.9: 53–56 (1984).Google Scholar
  62. 62.
    Takai, Y.; Kishimoto, A.; Kikkawa, U.; Mori, T.; Nishizuka, Y.: Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem. biophys. Res. Commun.91: 1218–1224 (1979).PubMedGoogle Scholar
  63. 63.
    Kishimoto, A.; Takai, Y.; Mori, T.; Kikkawa, U.; Nishizuka, Y.: Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. biol. Chem.255: 2273–2276 (1980).PubMedGoogle Scholar
  64. 64.
    Cerione, R.A.; Stralovici, B.; Benovic, J.L.; Lefkowitz, R.J.; Caron, M.G.: Pure B-adrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase. Nature, Lond.306: 562–566 (1984).Google Scholar
  65. 65.
    Joseph, S.K.; Thomas, A.P.; Williams, R.J.; Irvine, R.F.; Williamson, J.R.: Myo-inositol, 1,4,5-trisphosphate. J. biol. Chem.259: 3077–3081 (1984).PubMedGoogle Scholar
  66. 66.
    Dawson, A.P.; Irvine, R.F.: Inositol (1,4,5)-trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem. biophys. Res. Commun.120: 858–864 (1984).PubMedGoogle Scholar
  67. 67.
    Prentki, M.; Biden, T.J.; Janjic, D.; Irvine, R.F.; Berridge, M.J.; Wollheim, C.B.: Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature, Lond.309: 562–564 (1984).Google Scholar
  68. 68.
    Monroe, J.G.; Niedel, J.E.; Cambier, J.C.: B cell activation. IV. Induction of cell membrane depolarization and hyper-IA expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. J. Immun.132: 1472–1478 (1984).PubMedGoogle Scholar
  69. 69.
    Cambier, J.C.; Monroe, J.G.; Coggeshall, K.M.; Ransom, J.T.: On the mechanism of transmembrane signalling by B lymphocyte surface immunoglobulin. Immunol. Today6: 218 (1985).Google Scholar
  70. 70.
    Bottomly, K.; Jones, B.; Kaye, J.; Jones, F., III: Subpopulations of B cells distinguished by cell surface expression of Ia antigens. J. exp. Med.158: 265 (1983).PubMedGoogle Scholar
  71. 71.
    Henry, C.; Chan, E.L.; Kodlin, D.: Expression and function of I region products on immunocompetent cells. II. I region products in T-B interaction. J. Immun.119: 744 (1977).PubMedGoogle Scholar
  72. 72.
    Coggeshall, K.M.; Cambier, J.C.: B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J. Immun.133: 3382–3386 (1985).Google Scholar
  73. 73.
    Bijsterbosch, M.K.; Meade, C.J.; Turner, G.A.; Klaus, G.G.B.: B lymphocyte receptors and polyphosphoinositide degradation. Cell41: 999–1006 (1985).PubMedGoogle Scholar
  74. 74.
    Ransom, J.T.; Harris, L.K.; Cambier, J.C.: Anti-Ig induces release of inositol 1,4,5-trisphosphate, which mediates mobilization of intracellular Ca2+ stores in B lymphocytes. J. Immun.137: 708–714 (1986).PubMedGoogle Scholar
  75. 75.
    Ransom, J.T.; Cambier, J.C.: B cell activation. VII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and IA expression. J. Immun.136: 66–72 (1986).PubMedGoogle Scholar
  76. 76.
    Coggeshall, K.M.; Cambier, J.C.: B cell activation. VI. Effects of exogenous diglyceride and modulators of phospholipid metabolism suggest a central role for diacylglycerol generation in transmembrane signalling by mIg. J. Immun.134: 101–107 (1985).PubMedGoogle Scholar
  77. 77.
    Rittenhouse, S.E.: Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc. natn. Acad Sci. USA80: 5417–5420 (1983).Google Scholar
  78. 78.
    Smith, C.D.; Cox, C.C.; Snyderman, R.: Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science232: 97–100 (1986).PubMedGoogle Scholar
  79. 79.
    J. Rec. Res.4: 605 (1984).Google Scholar
  80. 80.
    Cockcroft, S.; Gomperts, B.D.: Role of guanine nucleotide binding protein in the activation of phosphoinositide phosphodiesterase. Nature, Lond.314: 534–536 (1985).Google Scholar
  81. 81.
    Litosch, I.; Wallis, C.; Fain, L.: 5-Hydroxytryptamine stimulates inositol phosphate production in a cell free system from blowfly salivary glands. J. biol. Chem.260: 5464–5471 (1985).PubMedGoogle Scholar
  82. 82.
    Nakamura, T.; Ui, M.: Simultaneous inhibition of inositol phospholipid breakdown, arachadonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J. biol. Chem.260: 3584–3593 (1985).PubMedGoogle Scholar
  83. 83.
    J. biol. Chem.260: 7226 (1985).Google Scholar
  84. 84.
    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.: Bradykinin-activated transmembrane signals are coupled via No or N1 production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. Proc. natn. Acad. Sci. USA83: 942–946 (1986).Google Scholar
  85. 85.
    Martin, M.W.; Evans, T.; Harden, T.K.: Further evidence that muscarinic cholinergic receptors of 132N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not N1. Biochem. J.229: 539–544 (1985).PubMedGoogle Scholar
  86. 86.
    Merritt, J.E.; Taylor, C.W.; Rubin, R.P.; Putney, J.W., Jr.: Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J.236: 337–343 (1986).PubMedGoogle Scholar
  87. 87.
    Niedel, J.E.; Kuhn, L.J.; Vanderbark, G.R.: Phorbol diester receptor co-purifies with protein kinase. C. Proc. natn. Acad. Sci. USA80: 36–41 (1983).Google Scholar
  88. 88.
    Shoyab, M.; Todaro, G.J.: Specific high affinity cell membrane receptors for biologically active phorbol and ingenol esters. Nature, Lond.288: 451–455 (1980).Google Scholar
  89. 89.
    Nishizuka, Y.; Takai, Y.; Kishimoto, A.; Kikkawa, U.; Kaibuchi, K.: Phospholipid turnover in hormone action. Recent Prog. Horm. Action40: 301–340 (1984).Google Scholar
  90. 90.
    Monroe, J.G.; Cambier, J.C.: Sorting of B lymphoblasts based upon cell diameter provides cell population enriched in different stages of cell cycle. J. Immunol. Methods63: 45–56 (1983).PubMedGoogle Scholar
  91. 91.
    Darzynkiewicz, Z.; Traganos, F.; Melamed, M.R.: New cell cycle compartments identified by multiparameter flow cytometry. Cytometry1: 98 (1980).PubMedGoogle Scholar
  92. 92.
    Darzynkiewicz, Z.; Traganos, F.; Sharpless, T.; Melamed, M.R.: Lymphocyte stimulation: a rapid multiparameter analysis. Proc. natn. Acad. Sci. USA73: 2881 (1976).Google Scholar
  93. 93.
    Monroe, J.G.; Kass, M.J.: Molecular events in B cell activation. I. Signals required to stimulate Go to G1 transition of resting B lymphocytes. J. Immun.135: 1674–1682 (1985).PubMedGoogle Scholar
  94. 94.
    Monroe, J.G.; Gaulton, G.N.: Comparison of protein phosphorylation induced by mitogen and phorbol diester stimulation of murine T and B lymphocytes. Surv. immunol. Rev.4: 192–199 (1985).Google Scholar
  95. 95.
    Kelly, K.; Cochran, B.H.; Stiles, C.D.; Leder, P.: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell35: 603–610 (1983).PubMedGoogle Scholar
  96. 96.
    Knight, E.; Anton, E.D.; Fahley, D.; Friedland, B.K.; Jonak, G.J.: Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc. natn. Acad. Sci. USA82: 1151–1154 (1985).Google Scholar
  97. 97.
    Campisi, J.; Gray, H.E.; Pardee, A.B.; Dean, M.; Sonenshein, G.E.: Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell36: 241–247 (1984).PubMedGoogle Scholar
  98. 98.
    Greenberg, M.E.; Ziff, E.B.: Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature, Lond.311: 433 (1984).Google Scholar
  99. 99.
    Sorrentino, V.: Proc. natn. Acad. Sci. USA83: 8167 (1986).Google Scholar
  100. 100.
    Ran, W.; Dean, M.; Levine, R.A.; Henkle, C.; Campisi J.: Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent. proc. natn. Sci. USA83: 8216 (1986).Google Scholar
  101. 101.
    Kruijer, W.; Cooper, J.A.; Hunter, T.; Verma, I.M.: Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature, Lond.312: 711–716 (1984).Google Scholar
  102. 102.
    Bravo, R.; Burckhardt, J.; Curran, T.; Muller, R.: Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c-foc and c-myc proto-oncogenes. Eur. molec. Biol. Org. J.4: 1193–1197 (1985).Google Scholar
  103. 103.
    Curran, T.: Viral and cellular fos proteins: a comparative analysis. Cell36: 259–268 (1984).PubMedGoogle Scholar
  104. 104.
    Persson, H.; Leder, P.: Nuclear localization and DNA binding properties of a protein expressed by human c-myc oncogene. Science225: 718–720 (1984).PubMedGoogle Scholar
  105. 105.
    Boyd, A.W.; Schrader, J.W.: The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI-231 by anti-immunoglobulin antibodies. J. Immun.126: 2466–2469 (1981).PubMedGoogle Scholar
  106. 106.
    LaBaer, J.; Tsien, R.Y.; Fahey, K.A.; DeFranco, A.L.: Stimulation of the antigen receptor on WEHI-231 B lymphoma cells results in a voltage-independent increase in cytoplasmic calcium. J. Immun.137: 1836–1844 (1986).PubMedGoogle Scholar
  107. 107.
    Monroe, J.G.; Cambier, J.C.: B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J. exp. Med.157: 2073–2086 (1983).PubMedGoogle Scholar
  108. 108.
    LoCascio, N.J.; Haughton, G.; Arnold, L.W.; Corley, R.B.: Role of cell surface immunoglobulin in B-lymphocyte activation. Proc. natn. Acad. Sci. USA81: 2466–2469 (1984).Google Scholar
  109. 109.
    Scott, D.W.; Livnat, D.; Pennell, C.A.; Keng, P.: Lymphoma models for B cell activation and tolerance. II. Growth inhibition by anti-u of WEHI-231 and the selection and properties of resistant mutants. Cell. Immunol.93: 124–133 (1985).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • John G. Monroe
    • 1
  • Vicki L. Seyfert
    • 1
  1. 1.Department of PathologyUniversity of Pennsylvania School of MedicinePhiladelphia(USA)

Personalised recommendations