Skip to main content
Log in

Yield surfaces in prestrained aluminum and copper

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The analysis of strain-hardening materials subjected to multiaxial states of stress requires more detailed experimental information about the effects of previous plastic deformation on the yield surfaces of real materials than is presently available. To provide insight into some of these effects thin walled tubular specimens of 1100-0 aluminum and annealed OFHC copper were subjected to biaxial stresses through the application of simultaneous axial tension and internal pressure, and the effects of the magnitude, direction, and sequence of prestraining operations on subsequent yield surfaces were determined. It was found that the yield surface behavior depends greatly upon the definition of yielding employed. Use of small proof strain definitions resulted in very anisotropic yield surface characteristics which reflected the effect of previous deformation. On the other hand, use of large proof strains resulted in isotropic yield surface characteristics which were devoid of previous deformation influence. The small proof strain yield curves were found, in general, to expand and translate in the direction of prestrain and, for biaxial prestrains, to be distorted in the vicinity of the loading point. Multiple prestrain sequences in normal directions induce a large negative cross effect similar to Bauschinger effect observed under reversed loading. Such anisotropic behavior was found to contradict the two most commonly used continuum mechanics predictions, the isotropic and kinematic hardening rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Drucker:Proc. 1st U.S. Nat. Congr. Appl. Mech., 1951, p. 487.

  2. W. Prager:Proc. Inst. of Mech. Engrs., 1955, vol. 169, p. 41.

    Article  Google Scholar 

  3. S. B. Batdorf and B. Budiansky:NACA TN1871, 1949.

  4. T. H. Lin:Proc. 2nd U.S. Natl. Congr. Appl. Mech., 1954, p. 461.

  5. T. H. Lin:Proc. 3rd U.S. Natl. Congr. Appl. Mech., 1958, p. 581.

  6. W. Koiter:Quart. Appl. Math., 1953, vol. 11, p. 350.

    Google Scholar 

  7. J. L. Sanders:Proc. 2nd U.S. Natl. Congr. Appl. Mech., 1954, p. 455.

  8. G. Backhaus:ZAMM, 1968, vol. 48, p. 99.

    Article  Google Scholar 

  9. Z. Mroz:J. Mech. Phys. Solids, 1967, vol. 15, p. 163.

    Article  Google Scholar 

  10. A. Baltov and A. Sawzuk:Acta Mech., 1965, vol. 1, p. 6.

    Article  Google Scholar 

  11. G. I. Taylor and H. Quinney:Phil. Trans. Roy. Soc., 1932, vol. 230, p. 323.

    Article  Google Scholar 

  12. T. C. Hsu:J. Strain. Anal., 1966, vol. 1, p. 331.

    Article  Google Scholar 

  13. H. J. Ivey:J. Mech. Eng. Sci., 1961, vol. 3, p. 2.

    Article  Google Scholar 

  14. P. M. Naghdi, F. Essenburg, and W. Koff:J. Appl. Mech., 1958, vol. 25, p. 201.

    Google Scholar 

  15. J. Parker and M. B. Bassett:J. Appl. Mech., 1964, vol. 31, p. 676.

    Google Scholar 

  16. H. G. McComb, Jr.:NASA-TN D-396, 1960.

  17. P. K. Bertsch and W. N. Findley:Proc. 4th U.S. Natl. Congr. Appl. Mech., 1962, vol. 2, p. 893.

    Google Scholar 

  18. L. W. Hu and J. F. Bratt:J. Appl. Mech., 1958, vol. 25, p. 411.

    Google Scholar 

  19. W. M. Mair and H. Ll. D. Pugh:J. Mech. Eng. Sci., 1964, vol. 6, p. 150.

    Article  Google Scholar 

  20. J. Miastkowski and W. Szczepinski:Int. J. Solids Structures, 1965, vol. 1, p. 198.

    Article  Google Scholar 

  21. E. Shiratori, K. Ikegami and H. Okano:Bull. ISME, 1968, vol. 11, p. 413.

    Google Scholar 

  22. E. Shiratori and K. Ikegami:J. Mech. Phys. Solids, 1968, vol. 16, p. 373.

    Article  Google Scholar 

  23. J. Miastkowski:Arch. Mech. Stos., 1968, vol. 3, p. 262.

    Google Scholar 

  24. W. Szczepinski and J. Miastkowski:J. Mech. Phys. Solids, 1968, vol. 16, p. 153.

    Article  Google Scholar 

  25. S. S. Hecker, B. G. Strait, and R. M. Laing: Los Alamos Report LA-4550, Los Alamos Scientific Laboratory, Los Alamos, N.M.

  26. J. W. Dally and W. F. Riley.Experimental Stress Analysis, p. 399, McGraw-Hill Book Co., New York, 1965.

    Google Scholar 

  27. S. S. Hecker,Microtecnic, 1971, vol. XXV, p. 49.

    Google Scholar 

  28. G. N. White and D. C. Drucker:J. Appl. Phys., 1950, vol. 21, p. 1013.

    Article  Google Scholar 

  29. R. L. Sierakowski and A. Phillips:Acta Mech., 1968, vol. 6, p. 217.

    Article  Google Scholar 

  30. C. S. Barrett:Structure of Metals, 2nd ed., p. 492, McGraw-Hill Book Co., New York, 1952.

    Google Scholar 

  31. J. D. Lubahn:J. Metals, 1955, vol. 205, p. 1031.

    Google Scholar 

  32. J. D. Lubahn:Trans. ASM, 1952, vol. 44, p. 643.

    Google Scholar 

  33. R. L. Whitley:Trans. ASM, 1960, vol. 52, p. 154.

    Google Scholar 

  34. W. A. Backofen, W. F. Hosford, Jr., and J. J. Burke:Trans. ASM, 1962, vol. 55, p. 264.

    CAS  Google Scholar 

  35. R. Hill:Proc. Roy. Soc., 1948, vol. 193A, p. 281.

    Google Scholar 

  36. A. W. McReynolds:Trans. AIME, 1949, vol. 185, p. 32.

    Google Scholar 

  37. S. R. Bodner and A. Rosen:J. Mech. Phys. Solids, 1967, vol. 15, p. 47.

    Article  Google Scholar 

  38. A. Rosen and S. R. Bodner:J. Mech. Phys. Solids, 1967, vol. 15, p. 63.

    Article  Google Scholar 

  39. B. Paul:Fracture, vol. 2, p. 313, Academic Press, New York, 1968.

    Google Scholar 

  40. J. D. Lubahn and R. P. Felgar:Plasticity and Creep in Metals, p. 286. J. Wiley and Sons, New York, 1961.

    Google Scholar 

  41. S. S. Hecker, accepted for publication inActa Mech., 1971.

  42. E. Kröner:Appl. Mech. Rev., 1962, vol. 15, p. 599.

    Google Scholar 

  43. C. Truesdell and W. Noll:Handbuch der Physik, Springer Verlag, 1965.

  44. R. F. Kocks:Met. Trans., 1970, vol. 1, p. 1121.

    Google Scholar 

  45. J. W. Hutchinson:Proc. Roy. Soc. London, A, 1970, vol. 319, p. 247.

    Article  CAS  Google Scholar 

  46. G. Sachs:Z. Verein Deut. Ing., 1928, vol. 72, p. 734.

    Google Scholar 

  47. G. I. Taylor:J. Inst. Metals, 1938, vol. 62, p. 307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. S. HECKER, formerly Postdoctoral Appointed at the Los Alamos Scientific Laboratory, Los Alamos, N. Mex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, S.S. Yield surfaces in prestrained aluminum and copper. Metall Trans 2, 2077–2086 (1971). https://doi.org/10.1007/BF02917534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917534

Keywords

Navigation