Skip to main content
Log in

Stress distribution and effective stress intensity factor of a blunt crack after dislocation emission

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The stress fields induced by a dislocation and its image dislocations around a narrow elliptic void are formulated. Based on the solution, the stress distribution and effective stress intensity factor of a blunt (elliptic) crack were calculated under mode I constant loading. The results show that a dislocation-free zone (DFZ) is formed after dislocation emission. There exists a second stress peak in the DFZ except a stress peak at the blunt crack tip. With an increase in the applied stress intensity factorK la or the friction stress τf of the material, the DFZ size and the peak stress at the crack tip decrease, but the peak stress in the DFZ and the effective stress intensity factorK if presiding at the crack tip increase. Because of dislocation shíeldíing, effects, shieldíng ratioK la/K if increases with increasingK la, but it decreases with increasing τf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Q. Z., Chu, W. Y., Hsiao, C. M.,In situ TEM observations of nucleation and bluntness of nanocracks in thin crystals of 310 stainless stee, Acta Metall. Mater., 1995, 43: 4371.

    Article  Google Scholar 

  2. Chu, W. Y., Zhang, Y., Wang, Y. B. et al., Thein situ TEM observation of nenocrack in titanium aluminide, Science in China, Ser. A, 1995 38(3): 233.

    Google Scholar 

  3. Chu, W. Y., Gao, K. W., Wang, Y. B., et al., Nucleating and propagation of nanocrack in dislocation free zone in brittle material, Science in China, Ser. A, 1995, 38: 1201.

    Google Scholar 

  4. Chu, W. Y., Gu, B., Gao, K. W. et al., Corrosion-enhanced dislocation emission and motion resulting in initiation of stress corrosion cracking, Science in China, Ser. E, 1997, 40(3): 235.

    Article  Google Scholar 

  5. Lu, H., Li, M. D., Zhang, T. C. et al., Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen-induced cracking for steel, Science in China, Ser. E, 1997 40(5): 530.

    Article  Google Scholar 

  6. Su, Y. J., Wang, Y. B., Chu, W. Y., Chemisorption-facilitated dislocation emission and motion, and induced nucleation of brittle nanocrack, Science in China, Ser. E, 1997, 40(6) 661.

    Article  Google Scholar 

  7. Rice, J. R., Thomson, R., Ductile versus brittle behaviour of crystals, Phil. Mag., 1994, 29: 73.

    Article  Google Scholar 

  8. Chen, Q. Z., Gao, K. W., Zhang Y., et al., Nucleation blunting and propagation of a nanocrack in DFZ of thin crystals, Fatigue Frac. Eng. Mater. Struc., 1998, 21: 981.

    Google Scholar 

  9. Ohr, S. M., An electron microscope study of crack tip deformation and its impact on dislocation theory of fracture, Mater. Sci. Eng., 1983, 59: 1.

    Article  Google Scholar 

  10. Zhu, T., Yang, W., Gao, T., Quasi-cleavage processes driven by dislocation piloups, Acta mater., 1996, 44: 3049.

    Article  Google Scholar 

  11. Suo, Z., Uarias, A. G., Shih, C. F., A theory for cleavage cracking in the presence of plastic flow. Acta Metall. Mater., 1993, 41: 1551.

    Article  Google Scholar 

  12. Beltz, G. E., Rice, J. R., Shih, C. F. et al., A self-consistent model for cleavage in the presence of plastic flow, Acta Mater., 1996, 44: 3943.

    Article  Google Scholar 

  13. Dundurs, J., Mura, T., Interaction between an edge dislocation and a circular inclusion, J. Mech. Phys. Solids, 1964, 12: 177.

    Article  MathSciNet  Google Scholar 

  14. Erdogan, F., Gupta, G. D., Ratwani, M., Interaction between a circular inclusion and an arbitrarily oriented crack, J. Appl. Mech., ASME, 1974, 41: 1014.

    MATH  Google Scholar 

  15. Stagni, L., Lizzio, R., Shape effects in the interaction between an edge dislocation and an elliptical inclusion, J. Appl. Phys., 1983, A30: 217.

    Article  Google Scholar 

  16. Santare, M. H., Dislocation inside an, isotropic elliptical inclusion surrounded by an anisotropic medium, J. Appl. Mech., ASME, 1995, 62: 537.

    MATH  Google Scholar 

  17. Santara, M. H., Keer, L. M., Interaction between an edge dislocation and 1 rigid elliptical inclusion, J. Appl. Mech., ASME, 1986, 53: 382.

    Article  Google Scholar 

  18. Yen, W. J., Hwu, C., Interaction between dislocations and anisotropic elliptical inclusions, J. Appl. Mech., ASME, 1994, 61: 548.

    MATH  Google Scholar 

  19. Zhang, T. Y., Qian, C. F., Interaction of a screw dislocation with a thin-film-covered mode III crack, Acta Mater. 1996, 44: 4513.

    Article  Google Scholar 

  20. Mura, T., Micromechanics of Defects in Solids, Hague: Martinus Nijhoff, 1982.

    Google Scholar 

  21. Mura, T., Inclusion problems, Appl. Mech. Beview, ASME, 1988, 41: 15.

    Google Scholar 

  22. Zhang, H, Advanced Elasticity (in Chinese), Beijing: Press of Beijing University of Aeronautics and Astronautics, 1994

    Google Scholar 

  23. Zhang, T. Y., Li, J. C. M., Image forces and shielding effects of an edge dislocation near a finite length crack, Acta Metall. Mater., 1991, 39: 2739.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifu Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, C., Qiao, L. & Chu, Q. Stress distribution and effective stress intensity factor of a blunt crack after dislocation emission. Sci. China Ser. E-Technol. Sci. 43, 421–429 (2000). https://doi.org/10.1007/BF02916990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916990

Keywords

Navigation