Skip to main content
Log in

Application of electron energy loss spectroscopy and electron spectroscopic imaging to aluminum determination in biological tissue

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 1994

Abstract

Electron energy loss spectroscopy (EELS) is a high spatial resolution electron microscopic technique with the potential to quantify elements at the subcellular level. The presence of each element is demonstrated by the electron energy loss edge at the energy characteristic of that element. The area of the edge may indicate the quantity of element present. Electron spectroscopic imaging (ESI) is a similar technique generating graphic images of elemental localization in the specimens. An ESI of an aluminum (Al)-loaded rabbit hippocampus showed Al only in pyramidal cell lysosomes, but no EELS edge could be obtained. To determine the sensitivity of EELS for Al and to be able to adjust the instrument to optimal operating conditions, standards containing 50–5000 ppm Al were produced. An Al-chloride:dicyclohexano-18-crown-6 (Al:crown) complex was synthesized. The purity of the complex was confirmed by nuclear magnetic resonance (NMR) spectroscopy and the percentage of Al in the complex was determined by electrothermal atomic absorption spectroscopy (ETAAS). The complex was introduced into a biological tissue embedding resin (Spurr medium) and appeared to be compatible with the resin at Al concentrations ≤500 ppm. EELS signals from the Al K edge could be obtained at a spatial resolution of 3.3 nm in a 30-nm thick section from 2.78×10−21 g of Al, representing a sample concentration of 1% Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Egerton,Electron energy-loss spectroscopy in the electron microscope, Plenum, New York, 1986.

    Google Scholar 

  2. M. A. Mignon-Conté, J. P. Pourrat, F. Carentz, J. Sévely and J. J. Conté,Eur. J. Clin. Invest. 12, 27 (1982).

    Google Scholar 

  3. A. L. Arsenault, F. P. Ottensmeyer, and A. B. Hodsman, inClinical disorders of bone and mineral metabolism, B. Frame and J. T. Potts eds., Excerpta Medica, Princeton, NJ, 1983, pp. 220–223.

    Google Scholar 

  4. J. Böhmer and H. Rahmann,Ultramicroscopy 32, 18–25 (1990).

    Article  Google Scholar 

  5. J. Böhmer and H. Rahmann,J. Microsc. 162, 115–122 (1991).

    PubMed  Google Scholar 

  6. V. W. Linss, R. Martin, G. Stein, H. Bräunlich and C. Fleck,Acta Histochem. 90, 65–73 (1991).

    PubMed  CAS  Google Scholar 

  7. V. W. Linß, R. Martin, G. Stein, H. Bräunlich and C. Fleck,Acta Histochem. Suppl. 42, S 273–276 (1992).

    PubMed  Google Scholar 

  8. C. L. Webb, F. J. Schoen, W. E. Flowers, A. C. Alfrey, C. Horton and R. J. Levy,Am. J. Path. 138, 971–981 (1991).

    PubMed  CAS  Google Scholar 

  9. M. J. Hendrick, M. H. Goldschmidt, F. S. Shofer, Y.-Y. Wang and A. P. Somlyo,Cancer Res. 52, 5391–5394 (1992).

    PubMed  CAS  Google Scholar 

  10. A. R. Spurr, inMicroproble analysis as applied to cells and tissues, J. A. Hall, P. Echlin and R. Kaufmann, eds., Academic, London and New York, 1974, pp. 213–227.

    Google Scholar 

  11. A. R. Spurr,J. Microscopie Biol. Cell 22, 287–302 (1975).

    Google Scholar 

  12. J. F. Muller, M. A. Gelot, P. Netter and R. Kaufmann,Biomedicine 36, 380–383 (1982).

    CAS  Google Scholar 

  13. A. H. Verbueken, R. E. Van Grieken, G. J. Paulus and W. C. de Bruijn,Anal. Chem. 56, 1362–1370 (1984).

    Article  CAS  Google Scholar 

  14. J. M. Candy, A. E. Oakley, S. A. Mountfort, G. A. Taylor, C. M. Morris, H. E. Bishop and J. A. Edwardson,Biol. Cell 74, 109–118 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Lovell, W. D. Ehmann and W. R. Markesbery,J. Trace Microprobe Tech. 10, 109–124 (1992).

    CAS  Google Scholar 

  16. J. J. Godleski, R. C. Stearns and E. J. Millet, inProceedings of the 47th Annual Meeting of the Electron Microscopy Society of America, G. W. Bailey, ed., San Francisco Press, San Francisco, CA 1989, p. 404, 405.

    Google Scholar 

  17. N. R. Strel'tsova, V. K. Bel'skii, L. V. Ivakina, P. A. Storozhenko and B. M. BulyshevKoord. Khim. 13, 1101–1108 (1987).

    Google Scholar 

  18. R. A. Yokel and J. M. Melograna,Biol. Trace Elem. Res. 5, 225–237 (1983).

    Article  CAS  Google Scholar 

  19. P. Galle, M. Chatel, J. P. Berry and F. Menault,Nouv. Presse Med. 8, 4091–4094 (1979).

    PubMed  CAS  Google Scholar 

  20. C. J. Pedersen and H. K. Frensdorff,Angew. Chem. Int. 11, 16–25 (1972).

    Article  CAS  Google Scholar 

  21. S. G. Bott, H. Elgamal and J. L. Atwood,J. Am. Chem. Soc. 107, 1796–1797 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02990491.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Yokel, R.A. & Markesbery, W.R. Application of electron energy loss spectroscopy and electron spectroscopic imaging to aluminum determination in biological tissue. Biol Trace Elem Res 40, 39–48 (1994). https://doi.org/10.1007/BF02916819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916819

Index Entries

Navigation