Skip to main content
Log in

Variation of trace metals in ancient and contemporary Japanese bones

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Excavated and contemporary bones (rib cortexes) of a mature age (40–60 yr) were analyzed by atomic absorption spectrometry for the concentration of seven elements, including Ca, Cd, Cu, Fe, Mn, Ni, and Pb, with a view to historically evaluating the chemical composition of the bones. Fifty-two well-preserved specimens, obtained from western Japan, were classified into six groups according to Japanese prehistoric and historic eras (Jomon, Yayoi, Kofun, Muromachi, Edo, and Contemporary). Average concentrations of Ca were 0.20–0.33 g/g in the excavated bones and 0.17 g/g in the contemporary bones. Among the trace metals, such as Cu, Fe, Mn, and Pb, which showed remarkably elevated concentrations in the Edo era bones, Cu, Fe, and Mn were found to be strongly associated with soil contamination. Lead levels only slightly increased between the Jomon and Kofun eras, but became abruptly elevated following the Edo era. In contrast, the concentrations of Cd increased abruptly in the Yayoi era to a level with an order of magnitude higher than the Edo era, and they have recently decreased to rather low contemporary levels. This tendency becomes clearer when comparing the molar ratio of trace metals to Ca. The cause of elevated Cd concentrations in early excavated bones is discussed in relation to the mineralization of bones and the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Klepinger,Ann. Rev. Anthropol. 13, 75 (1984).

    Article  Google Scholar 

  2. C. C. Patterson,Arch. Environ. Health 11, 344 (1965).

    PubMed  CAS  Google Scholar 

  3. P. Grandjean,Environmental Quality and Safety, Suppl. vol. II, Lead, T. B. Griffin and J. H. Knelson, eds., Georg Thieme, Stuttgart, pp. 6–75 (1975).

    Google Scholar 

  4. P. Grandjean, O. V. Nielsen, and I. M. Shapiro,J. Environ. Pathol. Toxicol. 2, 781 (1979).

    PubMed  CAS  Google Scholar 

  5. I. M. Shapiro, G. Mitchell, I. Davidson, and S. H. Katz,Arch. Environ. Health 30, 483 (1975).

    PubMed  CAS  Google Scholar 

  6. J. E. Ericson, H. Shirahata, and C. C. Patterson,New. Engl. J. Med. 300, 946 (1979).

    PubMed  CAS  Google Scholar 

  7. G. A. Drasch,Sci. Total Environ. 24, 199 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. Z. Jaworowski,Nature 217, 152 (1968).

    Article  CAS  Google Scholar 

  9. Z. Jaworowski, F. Barbalat, C. Blain, and E. Peyre,Sci. Total Environ. 43, 103 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. P. S. I. Barry,Br. J. Ind. Med. 32, 119 (1975).

    PubMed  CAS  Google Scholar 

  11. A. Hisanaga, Y. Eguchi, M. Hirata, and N. Ishinishi,Biol. Trace Element Res. 16, 77 (1988).

    Article  CAS  Google Scholar 

  12. Fisher Scientific Co.,Atomic Absorption Analytical Method, Nos. 9, 10, 14, 18, and 35, Waltham, MA, 1970's.

  13. P. Bratter, D. Gawlic, J. Lausch, and V. Rosick,Proc. 1976 Int. Conf. Modern Trends in Activation Analysis, vol. 1, Munich, pp. 257–265 (1976).

    Google Scholar 

  14. K. Sumino, K. Hayakawa, T. Shibata, and S. Kitamura,Arch. Environ. Health,30, 487 (1975).

    PubMed  CAS  Google Scholar 

  15. H. J. M. Bowen,Trace Elements in Biochemistry, Academic, London, pp. 17 (1966).

    Google Scholar 

  16. R. B. Parker and H. Toots,Geol. Soc. Am. Bull. 81, 925 (1970).

    Article  CAS  Google Scholar 

  17. E. Badone and R. M. Farquhar,J. Radioanal. Chem. 69, 291 (1982).

    Article  CAS  Google Scholar 

  18. J. B. Lambert, C. B. Szpunar, and J. E. Buikstra,Archaeometry 21, 115 (1979).

    Article  CAS  Google Scholar 

  19. J. B. Lambert, S. M. Vlasak, A. C. Thometz, and J. E. Buikstra,Am. J. Phy. Anthropol. 59, 289 (1982).

    Article  CAS  Google Scholar 

  20. J. B. Lambert, S. V. Simpson, J. E. Buikstra, and D. Hanson,Am. J. Phy. Anthropol. 62, 409 (1983).

    Article  CAS  Google Scholar 

  21. H. Babich and G. Stotzky,Adv. Appl. Microbiol. 23, 55 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. J. A. Ryan, H. R. Pahren, and J. B. Lucas,Environ. Res. 28, 251 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. G. A. Drasch,Sci. Total Environ. 26, 111 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. H. Kosugi, K. Hanihara, T. Suzuki, S. Himeno, T. Kawabe, T. Hongo, and M. Morita,Sci. Total Environ. 52, 93 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Kitano and R. Fujiyoshi,Geochem. J. 14, 289 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisanaga, A., Hirata, M., Tanaka, A. et al. Variation of trace metals in ancient and contemporary Japanese bones. Biol Trace Elem Res 22, 221–231 (1989). https://doi.org/10.1007/BF02916610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916610

Index Entries

Navigation