Skip to main content
Log in

Corrosion-enhanced dislocation emission and motion resulting in initiation of stress corrosion cracking

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A special constant deflection device for TEM has been designed, and then change of dislocation configuration ahead of a crack tip during stress corrosion cracking (SCC) of brass in water and of Ti−24Al−11Nb alloy in methanol and initiation of SCC can be observed in TEM.In situ tensile test in TEM for brass was carried out for comparison. The results show that anodic dissolution during SCC can facilitate dislocation emission, multiplication and motion, and a dislocation free zone (DFZ) is formed. The stress at a particular site in the DFZ, which is an elastic zone and is thinned gradually through corrosion-enhanced dislocation emission and motion, is possibly up to the cohesive strength, resulting in initiating of a nanocrack of SCC in the DFZ or sometimes at the crack tip. Because of the action of the corrosion solution the nanocrack of SCC propagates into a cleavage or intergranular microcrack rather than blunts into a void likein situ tension in TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, W. Y., Ya, J., Hsiao, C. M., Stress corrosion cracking of austenitic stainless steel under compressive stress,Corrosion, 1984, 40: 302.

    Google Scholar 

  2. Sieradzki, K., Newman, R. C. B., Brittle behaviour of ductile metals during stress-corrosion cracking,Phil. Mag. A, 1985, 51: 95.

    Article  Google Scholar 

  3. Galvele, J. R., A stress corrosion cracking mechanism based on surface mobility,Corros. Sci., 1987, 27: 1.

    Article  Google Scholar 

  4. Jones, D. A., A united mechanism of stress corrosion and corrosion fatigue cracking,Metall. Trans., 1985, 16A: 1133.

    Google Scholar 

  5. Magnin, T., Chieragatti, R., Oltra, R., Mechanism of brittle fracture in a ductile 310 alloy during stress corrosion,Acta Metall. Mater., 1990, 38: 1313.

    Article  Google Scholar 

  6. Kaufman, M. J., Fink, J. I., Evidence for localized ductile fracture in the brittle transgranular SCC of ductile FCC alloys,Acta Metall., 1985, 36: 2213.

    Google Scholar 

  7. Flanagan, W. F., Bastias, P., Lichter, B. D., A theory of transgranular stress-corrosion cracking,Acta Metall. Mater., 1991, 39: 695.

    Article  Google Scholar 

  8. Flanagan, W. F., Zhong, L., Lichter, B. D., A mechanism for transgranular stress-corrosion cracking,Metall. Trans., 1993, 24A: 553.

    Google Scholar 

  9. Rios, R., Magmin, T., Noel, D.et al., Critical analysis of alloy 600 SCC mechanism in primary water,Metall. Mater. Trans., 1995, 26A: 925.

    Article  Google Scholar 

  10. Uhlig, H. H., Effect of surface dissolution on plastic deformation of iron and steel,J. Elec. Soc., 1976, 123: 1699.

    Article  Google Scholar 

  11. Smialowski, M., Kostansking, J., Creep and stress corrosion cracking of austenitic stainless steel in boiling 35% magnesium chloride solution,Corros. Sci., 1979, 19: 1019.

    Google Scholar 

  12. Gu, B., Chu, W. Y., Jiao, I. J.et al., The facilitating effect of anodic polarization on ambient creep of brass,Corrosion Sci., 1994, 44: 1437.

    Article  Google Scholar 

  13. Huang, Y., Cao, C., Lin, H.et al., SCC mechanism of AISI 321 in acidic chloride solution,Acta Metall. Sinica (in Chinese), 1993, 29: B212.

    Google Scholar 

  14. Wei, X. J., Zhou, X. Y., Ke, W., Investigating deformation at a crack tip during corrosion fatigue using laser moir interferometry technology,Acta Metall. Sinica (in Chinese), 1993, 29: B269.

    Google Scholar 

  15. Swann, P. R., Emburry, J. D., Initiation of stress corrosion cracking, inHigh Strength Materials (ed. Zackey, V. F.), New York: John Wiley, 1965, 327.

    Google Scholar 

  16. Huang, Y. H., Chen, Q. Z., Yuan, C. Y.et al., In situ TEM observations of dislocation emission and motion induced by anodic dissolution in 310 steel,Acta Metall. Sinica (in Chinese), 1994, 30: B452.

    Google Scholar 

  17. Chen, Q. Z., Chu, W. Y., Hsiao, C. M.,In situ TEM observations of nucleation and bluntness of nanocracks in thin crystals of 310 stainless steel,Acta Metall. Mater., 1995, 43: 4371.

    Article  Google Scholar 

  18. Chu, W. Y., Zhang, Y., Wang, Y. B.et al., Thein situ TEM observation of nanocrack in titanium aluminide,Science in China, Ser. A, 1995, 38: 233.

    Google Scholar 

  19. Chu, W. Y., Gao, K. W., Wang, Y. B.et al., Nucleating and propagation of nanocrack in dislocation free zone in brittle material,Science in China, Ser. A, 1995, 38: 1501.

    Google Scholar 

  20. Parkins, R. N., Rangel, C. M., Yu, J., Stress corrosion cracking of α-brass in waters with and without additions,Metall. Trans., 1985, 16A: 1671.

    Google Scholar 

  21. Zhang, Y., Chu, W. Y., Wang, Y. B.et al., Interphase stress corrosion crack,Sci. Metall. Mater., 1995, 32: 657.

    Article  Google Scholar 

  22. Ohr, S. M., An electron microscope study of crack tip deformation and its impact on dislocation theory of fracture,Mater. Sci. Eng., 1983, 59: 1.

    Article  Google Scholar 

  23. Nelson, J. C., Oriani, R. A., Stress generation during anodic oxidation of titanium and aluminum,Corros. Sci., 1993, 34: 307.

    Article  Google Scholar 

  24. Qiao, L. J., Chu, W. Y., Hsiao, C. M., Hydrogen-facilitated corrosion and SCC of stainless steel of type 310,Metall. Trans. A, 1993, 24: 959.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, W., Gu, B., Gao, K. et al. Corrosion-enhanced dislocation emission and motion resulting in initiation of stress corrosion cracking. Sci. China Ser. E-Technol. Sci. 40, 235–242 (1997). https://doi.org/10.1007/BF02916598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916598

Keywords

Navigation