Skip to main content
Log in

Regime shifts in the North Pacific simulated by a COADS-driven Isopycnal model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Miami Isopycnal Coordinate Ocean Model (MICOM) is adopted to simulate the interdecadal variability in the Pacific Ocean with most emphasis on regime shifts in the North Pacific. The computational domain covers 60°N to 40°S with an enclosed boundary condition for momentum flux, whereas there are thermohaline fluxes across the southern end as a restoring term. In addition, sea surface salinity of the model relaxes to the climatological season cycle, which results in climatological fresh water fluxes. Surface forcing functions from January 1945 through December 1993 are derived from the Comprehensive Ocean and Atmospheric Data Set (COADS). Such a numerical experiment reproduces the observed evolution of the interdecadal variability in the heat content over the upper 400-m layer by a two-year lag. Subduction that occurs at the ventilated thermocline in the central North Pacific is also been simulated and the subducted signals propagate from 35°N to 25°N, taking about 8 to 10 years, in agreement with the eXpendable Bathy Thermograph observation over recent decades. Interdecadal signals take a southwestward and downward path rather than westward propagation, meaning they are less associated with the baroclinic planetary waves. During travel, the signals appear to conserve potential vorticity. Therefore, the ventilated thermocline and related subduction are probably the fundamental physics for interdecadal variability in the mid-latitude subtropics of the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auad, G., Miller, A. J. White, W. B., 1998: Simulation of heat storages and associated heat budgets in the Pacific Ocean, 2, Interdecadal timescale.J. Geophys. Res.,103, 27621–27635.

    Article  Google Scholar 

  • Barnett, T. P., 1983, Interaction of the monsoon and Pacific trade wind system at interannual time scales. Part I: The equatorial zone.Mon. Wea. Rev.,111, 756–773.

    Article  Google Scholar 

  • Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic.J. Phys. Oceanogr.,22, 1486–1505.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991.J. Climate,9, 1840–1855.

    Article  Google Scholar 

  • Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics.Science,275, 805–807.

    Article  Google Scholar 

  • Huang, R. X., and J. Pedlosky, 1999: Climate variability inferred from a layered model of the ventilated thermocline.J. Phys. Oceanogr.,29, 779–790.

    Article  Google Scholar 

  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline, II The general theory and its consequences.Tellus,19, 98–105.

    Article  Google Scholar 

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America.Science,266, 634–637.

    Article  Google Scholar 

  • Liu, Z., and S.-I. Shin, 1999: On thermocline ventilation of active and passive tracers.Geophys. Res. Lett.,26, 357–360.

    Article  Google Scholar 

  • Lysne, J., P. Chang, and B. Giese, 1997: Impact of the extratropical Pacific on equatorial variability,Geophys. Res. Lett.,24, 2589–2592.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production.Bull. Amer. Meteor. Soc.,78, 1069–1079.

    Article  Google Scholar 

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts.Geophys. Res. Lett.,26, 855–858.

    Article  Google Scholar 

  • Nonaka, M., and S.-P. Xie, 2000: Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM.Geophys. Res. Lett.,27, 3747–3750.

    Article  Google Scholar 

  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics.J. Phys. Oceanogr.,29, 1056–1070.

    Article  Google Scholar 

  • Talley, L. D., 1985: Ventilation of the subtropical North Pacific.J. Phys. Oceanogr.,15, 633–649.

    Article  Google Scholar 

  • Tourre, Y. M., Y. Kushnir, and W. B. White, 1999: Evolution of interdecadal variability in sea level pressure, sea surface temperature and upper ocean temperature over the Pacific Ocean.J. Phys. Oceanogr.,29, 1528–1541.

    Article  Google Scholar 

  • Wang Dongxiao, and Zhengyu Liu, 2000: The pathway of the interdecadal variability in the Pacific Ocean.Chinese Science Bulletin,45(17), 1555–1561.

    Article  Google Scholar 

  • Wang Dongxiao, Wang Jia, Lixin Wu, and Zhengyu Liu, 2003: Relative importance of wind and buoyancy forcing for interdecadal regime shift in the Pacific Ocean.Science in China, D,46(5), 417–427.

    Article  Google Scholar 

  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability.Progress in Oceanography,36, 169–217.

    Article  Google Scholar 

  • White, W. B., and D. R. Cayan, 1998: Quasi-periodicity and global symmetries in interdecadal upper ocean temperature variability.J. Geophys. Res.,103, 21335–21354.

    Article  Google Scholar 

  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A comprehensive ocean-atmospheric data set.Bull. Amer. Meteor. Soc.,68, 1239–1250.

    Article  Google Scholar 

  • Zhang, R.-H., and S. Levitus, 1997: Structure and cycle of decadal variability of upper ocean temperature in the North Pacific.J. Climate,10, 710–727.

    Article  Google Scholar 

  • Zhang, R.-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño changes on decadal scales in the tropical Pacific Ocean.Nature,391, 879–883.

    Article  Google Scholar 

  • Zhang, R.-H., and Z. Liu, 1999: Decadal thermocline variability in the North Pacific Ocean: Two pathways around the subtropical gyre.J. Climate,12(11), 3273–3296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Dongxiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dongxiao, W., Jia, W., Wu, L. et al. Regime shifts in the North Pacific simulated by a COADS-driven Isopycnal model. Adv. Atmos. Sci. 20, 743–754 (2003). https://doi.org/10.1007/BF02915399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915399

Key words

Navigation