Skip to main content

Images from Waves — photoelastic modelling of bones

8th Samuel Haughton Lecture, Bioengineering Section of Royal Academy of Medicine in Ireland. January 2002


Background This paper cites the development of the principles of photoelastic stress analysis, contemporary to the life of Samuel Haughton. Subsequent studies of bone and joint replacements are discussed, with reference to hypotheses regarding bone, including the coincidence of trabecular structure with principal stresses. Issues regarding assumptions of homogeneous and isotropic properties in photoelastic modelling are acknowledged.

Aim Awareness of photoelastic methods is often through the visual appeal of the coloured fringe patterns. The aim of this paper is to complement this awareness by demonstration of the quantitative analyses that may be conducted through biomechanical examples.

Methods Examples of new pseudo three-dimensional model analyses are presented together with a method for photoelastic study of cancellous bone, which entails novel procedures for preparation of replicate models and for optical evaluation of fringes.

Conclusion Photoelastic analysis offers novel solutions to studies in biomechanics, which are facilitated by contemporary modelling materials.

This is a preview of subscription content, access via your institution.


  1. Jessop WJE. Samuel Haughton: A Victorian polymath. Hermathena, A Dublin University Review: Trinity Monday Memorial Discourse 1973: CXVI: 5–26.

    Google Scholar 

  2. Prendergast PJ, Lee TC. On a wing and a prayer: The biomechanics of the Rev. Dr. Samuel Haughton (1821–1897).J Ir Coll Phys Surg 1999; 28: 38–43.

    CAS  Google Scholar 

  3. Compact Oxford English Dictionary (2nd Edition). Oxford University Press 2000.

  4. McMillan ND. Rev. Samuel Haughton and the age of the earth controversy, Science in Ireland 1800–1930: Tradition and Reform. In: Proceedings of International Symposium at Trinity College Dublin 1986. Eds Nudds JR, McMillan ND, Weaire DL, Lawlor SMPMcK. 1988; 151–70.

  5. Brewster D. On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar and other substances by mechanical compression and dilatation.Phil Trans Royal Soc 1816; 156–78.

  6. Coker EG, Filon LNG. The Theory of Artificial Double Refraction. In: Treatise on Photoelasticity. Eds Coker EG and Filon LNG, revised Jessop HT. Cambridge University Press 1957; 181–295.

  7. Haughton S. On the reflexion of polarized light from the surface of transparent bodies.Phil Mag 1853; 6: 81–8.

    Google Scholar 

  8. Fung YC. Biomechanics, Mechanical Properties of Living Tissues. Springer-Verlag 1993; 515.

  9. Gebhardt W. Diskussium zum Vortag J. Scaffer: Trajektorielle Strukturen im Knorpel.Verh Anat Ges Jena 1911; 5: 203–15.

    Google Scholar 

  10. Orr JF, Humphreys PK, James WV et al. The application of photoelastic techniques in orthopaedic engineering. In: Applied Stress Analysis. Eds Hyde TH, Ollerton E. Elsevier Applied Science 1990; 111–20.

  11. Orr JF. Two- and three-dimensional photoelastic techniques. In: Strain Measurement in Biomechanics. Eds Miles AW, Tanner KE. Chapman & Hall 1992; 126–38.

  12. Orr JF, Finlay JB. Photoelastic Stress Analysis. In: Optical Measurement Methods in Biomechanics. Eds Orr JF, Shelton JC. Chapman & Hall 1997; 1–16.

  13. Roux W. Gesammelte Abhandlungen. Engelmann 1895.

  14. Brockhurst PJ, Svensson NL. Design of total hip prostheses.Med Prog Tech 1977; 5: 73–102.

    CAS  Google Scholar 

  15. Milch H. Photoelastic studies of bone forms.J Bone Jt Surg 1940; 22: 621–6.

    Google Scholar 

  16. Gaynor Evans F. Stress-Strain Studies with Models of Bones. In: Stress and Strain in Bones-Their relation to fractures and osteogenesis. Charles C Thomas Publisher 1957; 26–33.

  17. Haboush EJ. Photoelastic stress and strain analysis in cervical fractures of the femur.Bull Hosp Jt Dis 1952; 252–8.

  18. Pauwels F. Biomechanics of the locomotor apparatus. Springer Verlag 1980.

  19. Fessler H. Load distribution in a model of a hip joint.J Bone Jt Surg 1957; 39B: 145–53.

    Google Scholar 

  20. Steen Jensen J. A photoelastic study of a model of the proximal femur-A biomechanical study of unstable trocanteric fractures I.Acta Orthop Scand 1978; 49: 54–9.

    Google Scholar 

  21. Steen Jensen J. A photoelastic study of the hip nail-plate in unstable trocanteric fractures — a biomechanical study of unstable trocanteric fractures II.Acta Orthop Scand 1978; 49: 60–4.

    Google Scholar 

  22. Holm NJ. The development of a two-dimensional stress-optical model of the os coxae. Acta Orthop Scand 1981; 52: 135–43.

    Article  PubMed  CAS  Google Scholar 

  23. Maxwell JC. On the equilibrium of elastic solids.Trans Royal Soc Ed 1853; 20: 87–120.

    Google Scholar 

  24. Solakian AG. A new photoelastic material.Mech Eng 1935; 57: 767–71.

    Google Scholar 

  25. Williams JF, Svensson NL. An experimental stress analysis of the neck of the femur.Med Biol Eng 1971; 9: 479–93.

    Article  PubMed  CAS  Google Scholar 

  26. Tancred DC, Carr AJ, McCormack BAO. Development of new synthetic bone graft.J Mat Sc Mat Med 1998; 9: 819–23.

    Article  CAS  Google Scholar 

  27. Mushipe MT, Orr JF. Fabrication of life-size photoelastic cancellous bone models.Strain 2001; 37: 123–6.

    Article  Google Scholar 

  28. Post D. Isochromatic fringe sharpening and fringe multiplication in photoelasticity.Proc Soc Ex Stress Anal 1955; 12: 143–56.

    Google Scholar 

  29. O’Brien M. Exercise and osteoporosis. 7th Samuel Haughton Lecture.Ir J Med Sci 2001; 170: 58–62.

    Article  PubMed  CAS  Google Scholar 

  30. Hetenyi M. Handbook of Experimental Stress Analysis. John Wiley & Sons, Inc. 1950; 916.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to JF Orr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orr, J. Images from Waves — photoelastic modelling of bones. Ir J Med Sci 172, 209–213 (2003).

Download citation

  • Issue Date:

  • DOI: