Skip to main content
Log in

Copper resistance and genetic diversity inLychnis alpina (Caryophyllaceae) populations on mining sites

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Copper mine populations ofLychnis alpina are shown to be significantly more resistant to increased copper concentrations compared to populations on normal soils. Data obtained from isozyme polymorphism analysis revealed that although the copper populations display considerable variation, they have lower genetic variability than the populations from normal soils, both on a local and a global scale, thus indicating a slight founder effect. Copper ecotypes inL. alpina have originated independently. The results are similar to what recently have been reported in heavy metal tolerant populations ofArmeria maritima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradshaw A.D., McNeilly T. &Putwain P.D. (1990): The essential qualities. In:Shaw A.J. (ed.),Heavy metal tolerance in plants, evolutionary aspects, CRC Press Inc., Boca Raton, pp. 323–334.

    Google Scholar 

  • Brooks R.R. &Crooks H.M. (1980): Studies on uptake of heavy metals by the Scandinavian “kisplanten”Lychnis alpina andSilene dioica.Pl. & Soil 54: 419–496

    Article  Google Scholar 

  • Bush E.J. &Barrett S.C.H. (1993): Genetics of mine invasions byDeschampsia cespitosa (Poaceae).Canad. J. Bot. 71: 1336–1348.

    Article  Google Scholar 

  • Bøcher T.W. (1963): Experimental and cytological studies on plants species. VIII. Racial differentiation in amphi-atlanticViscaria alpina.Kongel. Danske Vidensk. Selsk. Biol. Skr. 11 (6): 1–33.

    Google Scholar 

  • Ducousso A., Petit D., Valero M. &Vernet P. (1990): Genetic variation between and within populations of a perennial grass:Arrhenatherum elatius.Heredity 65: 179–188.

    Article  Google Scholar 

  • Ergon Å. (1993):Ecotypic copper resistance in Lychnis alpinaL. M. Sc. thesis, University of Oslo, Oslo.

    Google Scholar 

  • Eriksen A.B., Njøs A., Nilsen S. &Sørbø J.G. (1985): Effects of lime, triple superphosphate, urea and night temperature on the yield of two varieties of wheat (Triticum aestivum L.) grown in soils from Antsirabe, Madagascar,Meld. Norg. Landbrukshøgskole 64: 1–35.

    Google Scholar 

  • Ernst W.H.O. (1996): Phytotoxicity of heavy metals. In:Rodriguez-Barrueco C. (ed.),Fertilisers and environment, Kluwer Acad. Publ., Dordrecht, pp. 423–430

    Google Scholar 

  • Ernst W.H.O. (1998): Population dynamics of plants under exposure and the selection of resistance. In:Schürmann G. &Markert B. (eds.),Ecotoxicology, John Wiley & Sons, Inc. and Spectrum Akademischer Verlag, Heidelberg, pp. 117–132.

    Google Scholar 

  • Ernst W.H.O., Schat H. &Verkleij J.A.C. (1990): Evolutionary biology of metal resistance inSilene vulgaris.Evol. Trends Pl. 4: 45–51.

    Google Scholar 

  • Hamrick J.L. &Godt M.J.W. (1990): Allozyme diversity in plant species. In:Brown A.H.D., Clegg M.T. Kahler A.L. &Weir B.S. (eds.),Plant population genetics, breeding and genetic resources, Sinauer Ass. Inc. Publ., Sunderland, pp. 43–63.

    Google Scholar 

  • Haraldsen K.B. &Wesenberg J. (1993): Population genetic analysis of an amphi-Atlantic species:Lychnis alpina (Caryophyllaceae).Nord. J. Bot. 13: 377–387.

    Article  Google Scholar 

  • Hultén E. &Fries M. (1986):Atlas of north European vascular plants north of the tropic cancer, Koeltz Scientific Books, Königstein.

    Google Scholar 

  • Levitt J. (1980):Response of plants to environmental stress. Ed. 2. Academic Press, New York.

    Google Scholar 

  • Lolkema P.C., Doornhof M. &Ernst W.H.O. (1986): Interaction between a copper-tolerant and a copper-sensitive population ofSilene cucubalus.Physiol. Pl. 67: 654–658.

    Article  CAS  Google Scholar 

  • Nei M. (1977): F-statistics and analysis of genetic diversity in subdivived populations.Ann. Human Genet. 41: 225–233.

    Article  CAS  Google Scholar 

  • Neumann D., Nieden U., Schwieger W., Leopold J. &Lichtenberger O. (1997): Heavy metal tolerance ofMinuartia verna.J. Pl. Physiol. 151: 101–108.

    CAS  Google Scholar 

  • Parker R.E. (1979):Introductory statistics for biology. Ed. 2. Edward Arnold, London.

    Google Scholar 

  • Petersen P.M. &Philipp M. (1986): Growth and reproduction ofViscaria alpina on Greenland with high and low copper concentration.Arctic Alpine Res. 18: 73–82.

    Article  Google Scholar 

  • Proctor J. &Johnston W.R. (1977):Lychnis alpina L. in Britain.Watsonia 11: 199–204.

    Google Scholar 

  • Rune O. (1953): Plant life on serpentines and related rocks in the north of Sweden.Acta Phytogegr. Suecica 31: 1–139.

    Google Scholar 

  • Schat H., Kuiper E., ten Bookum W.M. &Vooijs R. (1993): A general model for the genetic control of copper tolerance inSilene vulgaris: evidence from crosses between plants from different tolerant populations.Heredity 70: 142–147.

    Article  CAS  Google Scholar 

  • Schat H., Sharma S.S. &Vooijs R. (1997): Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype ofSilene vulgaris.Physiol. Pl. 101: 477–482.

    Article  CAS  Google Scholar 

  • Schat H. &Ten Bokum W.M. (1992): Genetic control of copper tolerance inSilene vulgaris.Heredity 68: 219–229.

    Article  CAS  Google Scholar 

  • Schat H. &Vooijs R. (1997): Multiple tolerance and co-tolerance to heavy metals inSilene vulgaris: a co-segregation analysis.New Phytol. 136: 489–496.

    Article  CAS  Google Scholar 

  • Schat H., Vooijs R. &Kuiper E. (1996): Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies ofSilene vulgaris.Evolution 50: 1888–1895.

    Article  CAS  Google Scholar 

  • Selander R.K. &Yang S.Y. (1969): Protein polymorphism and genetic heterozygosity in wild population of house mouse (Mus musculus).Genetics 63: 653–657.

    PubMed  CAS  Google Scholar 

  • Soltis D.E., Haufler C.H., Darrow D.C. &Gastony G.J. (1983): Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules.Amer. Fern J. 73: 9–27.

    Article  Google Scholar 

  • Swofford D.L. &Selander R.B. (1981): BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics.J. Heredity 72: 281–283.

    Google Scholar 

  • Vekemans X. &Lefèbvre C. (1997): On the evolution of heavy-metal tolerant populations inArmeria maritima: evidence from allozyme variation and reproductive barriers.J. Evol. Biol. 10: 175–191.

    Article  Google Scholar 

  • Vogt T. &Braadlie O. (1942): Geokjemisk og geobotanisk malmleting. IV. Plantevekst og jordbunn ved Rørosmalmene (Geochemical and geobotanical search for ore IV. Plant growth and soil at the Røros Mines).Kongel. Norske Vidensk. Selsk. Forh. 15(7): 25–28.

    CAS  Google Scholar 

  • Wendel J.F. &Weeden N.F. (1989): Visualization and interpretation of plant isozymes. In:Soltis D.E. &Soltis P.S. (eds.),Isozymes in plant biology, Chapman and Hall, London, pp. 5–45.

    Google Scholar 

  • Wesenberg J. (1999):Lychnis alpina. In:Jonsell B. (ed.),Flora Nordica I, Almquist & Wicksell Tryckeri, Stockholm (in press).

    Google Scholar 

  • Wright S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating.Evolution 19: 395–420.

    Article  Google Scholar 

  • Wright S. (1978):Evolution and the genetics of populations. 4. Variability within and among natural populations. Univ. Chicago Press, Chicago and London.

    Google Scholar 

  • Wu L., Bradshaw A.D. &Thurman D.A. (1975): The potential for evolution of heavy metal tolerance in plants III. The rapid evolution of copper tolerance inAgrostis stolonifera, Heredity 34: 165–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger Nordal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordal, I., Haraldsen, K.B., Ergon, Å. et al. Copper resistance and genetic diversity inLychnis alpina (Caryophyllaceae) populations on mining sites. Folia Geobot 34, 471–481 (1999). https://doi.org/10.1007/BF02914923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914923

Keywords

Navigation