Abstract
Copper mine populations ofLychnis alpina are shown to be significantly more resistant to increased copper concentrations compared to populations on normal soils. Data obtained from isozyme polymorphism analysis revealed that although the copper populations display considerable variation, they have lower genetic variability than the populations from normal soils, both on a local and a global scale, thus indicating a slight founder effect. Copper ecotypes inL. alpina have originated independently. The results are similar to what recently have been reported in heavy metal tolerant populations ofArmeria maritima.
Similar content being viewed by others
References
Bradshaw A.D., McNeilly T. &Putwain P.D. (1990): The essential qualities. In:Shaw A.J. (ed.),Heavy metal tolerance in plants, evolutionary aspects, CRC Press Inc., Boca Raton, pp. 323–334.
Brooks R.R. &Crooks H.M. (1980): Studies on uptake of heavy metals by the Scandinavian “kisplanten”Lychnis alpina andSilene dioica.Pl. & Soil 54: 419–496
Bush E.J. &Barrett S.C.H. (1993): Genetics of mine invasions byDeschampsia cespitosa (Poaceae).Canad. J. Bot. 71: 1336–1348.
Bøcher T.W. (1963): Experimental and cytological studies on plants species. VIII. Racial differentiation in amphi-atlanticViscaria alpina.Kongel. Danske Vidensk. Selsk. Biol. Skr. 11 (6): 1–33.
Ducousso A., Petit D., Valero M. &Vernet P. (1990): Genetic variation between and within populations of a perennial grass:Arrhenatherum elatius.Heredity 65: 179–188.
Ergon Å. (1993):Ecotypic copper resistance in Lychnis alpinaL. M. Sc. thesis, University of Oslo, Oslo.
Eriksen A.B., Njøs A., Nilsen S. &Sørbø J.G. (1985): Effects of lime, triple superphosphate, urea and night temperature on the yield of two varieties of wheat (Triticum aestivum L.) grown in soils from Antsirabe, Madagascar,Meld. Norg. Landbrukshøgskole 64: 1–35.
Ernst W.H.O. (1996): Phytotoxicity of heavy metals. In:Rodriguez-Barrueco C. (ed.),Fertilisers and environment, Kluwer Acad. Publ., Dordrecht, pp. 423–430
Ernst W.H.O. (1998): Population dynamics of plants under exposure and the selection of resistance. In:Schürmann G. &Markert B. (eds.),Ecotoxicology, John Wiley & Sons, Inc. and Spectrum Akademischer Verlag, Heidelberg, pp. 117–132.
Ernst W.H.O., Schat H. &Verkleij J.A.C. (1990): Evolutionary biology of metal resistance inSilene vulgaris.Evol. Trends Pl. 4: 45–51.
Hamrick J.L. &Godt M.J.W. (1990): Allozyme diversity in plant species. In:Brown A.H.D., Clegg M.T. Kahler A.L. &Weir B.S. (eds.),Plant population genetics, breeding and genetic resources, Sinauer Ass. Inc. Publ., Sunderland, pp. 43–63.
Haraldsen K.B. &Wesenberg J. (1993): Population genetic analysis of an amphi-Atlantic species:Lychnis alpina (Caryophyllaceae).Nord. J. Bot. 13: 377–387.
Hultén E. &Fries M. (1986):Atlas of north European vascular plants north of the tropic cancer, Koeltz Scientific Books, Königstein.
Levitt J. (1980):Response of plants to environmental stress. Ed. 2. Academic Press, New York.
Lolkema P.C., Doornhof M. &Ernst W.H.O. (1986): Interaction between a copper-tolerant and a copper-sensitive population ofSilene cucubalus.Physiol. Pl. 67: 654–658.
Nei M. (1977): F-statistics and analysis of genetic diversity in subdivived populations.Ann. Human Genet. 41: 225–233.
Neumann D., Nieden U., Schwieger W., Leopold J. &Lichtenberger O. (1997): Heavy metal tolerance ofMinuartia verna.J. Pl. Physiol. 151: 101–108.
Parker R.E. (1979):Introductory statistics for biology. Ed. 2. Edward Arnold, London.
Petersen P.M. &Philipp M. (1986): Growth and reproduction ofViscaria alpina on Greenland with high and low copper concentration.Arctic Alpine Res. 18: 73–82.
Proctor J. &Johnston W.R. (1977):Lychnis alpina L. in Britain.Watsonia 11: 199–204.
Rune O. (1953): Plant life on serpentines and related rocks in the north of Sweden.Acta Phytogegr. Suecica 31: 1–139.
Schat H., Kuiper E., ten Bookum W.M. &Vooijs R. (1993): A general model for the genetic control of copper tolerance inSilene vulgaris: evidence from crosses between plants from different tolerant populations.Heredity 70: 142–147.
Schat H., Sharma S.S. &Vooijs R. (1997): Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype ofSilene vulgaris.Physiol. Pl. 101: 477–482.
Schat H. &Ten Bokum W.M. (1992): Genetic control of copper tolerance inSilene vulgaris.Heredity 68: 219–229.
Schat H. &Vooijs R. (1997): Multiple tolerance and co-tolerance to heavy metals inSilene vulgaris: a co-segregation analysis.New Phytol. 136: 489–496.
Schat H., Vooijs R. &Kuiper E. (1996): Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies ofSilene vulgaris.Evolution 50: 1888–1895.
Selander R.K. &Yang S.Y. (1969): Protein polymorphism and genetic heterozygosity in wild population of house mouse (Mus musculus).Genetics 63: 653–657.
Soltis D.E., Haufler C.H., Darrow D.C. &Gastony G.J. (1983): Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules.Amer. Fern J. 73: 9–27.
Swofford D.L. &Selander R.B. (1981): BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics.J. Heredity 72: 281–283.
Vekemans X. &Lefèbvre C. (1997): On the evolution of heavy-metal tolerant populations inArmeria maritima: evidence from allozyme variation and reproductive barriers.J. Evol. Biol. 10: 175–191.
Vogt T. &Braadlie O. (1942): Geokjemisk og geobotanisk malmleting. IV. Plantevekst og jordbunn ved Rørosmalmene (Geochemical and geobotanical search for ore IV. Plant growth and soil at the Røros Mines).Kongel. Norske Vidensk. Selsk. Forh. 15(7): 25–28.
Wendel J.F. &Weeden N.F. (1989): Visualization and interpretation of plant isozymes. In:Soltis D.E. &Soltis P.S. (eds.),Isozymes in plant biology, Chapman and Hall, London, pp. 5–45.
Wesenberg J. (1999):Lychnis alpina. In:Jonsell B. (ed.),Flora Nordica I, Almquist & Wicksell Tryckeri, Stockholm (in press).
Wright S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating.Evolution 19: 395–420.
Wright S. (1978):Evolution and the genetics of populations. 4. Variability within and among natural populations. Univ. Chicago Press, Chicago and London.
Wu L., Bradshaw A.D. &Thurman D.A. (1975): The potential for evolution of heavy metal tolerance in plants III. The rapid evolution of copper tolerance inAgrostis stolonifera, Heredity 34: 165–178.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nordal, I., Haraldsen, K.B., Ergon, Å. et al. Copper resistance and genetic diversity inLychnis alpina (Caryophyllaceae) populations on mining sites. Folia Geobot 34, 471–481 (1999). https://doi.org/10.1007/BF02914923
Issue Date:
DOI: https://doi.org/10.1007/BF02914923