Skip to main content
Log in

The allotetraploid invasive weedBromus hordeaceus L. (Poaceae): Genetic diversity, origin and molecular evolution

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Bromus hordeaceus (sectionBromus, Poaceae), a predominantly self-fertilizing tetraploid (2n=28), is an annual weed native to the Mediterranean Basin, which now has a world-wide distribution. High morphological variation led to the recognition of four subspecies, three of which correlated with habitat-type. We examined genetic diversity at enzyme loci in 15 populations from the Mediterranean and the Atlantic region. Although sampled over a larger range of ecological and geographical conditions, the North-African populations appeared less genetically differentiated than populations from Brittany, suggesting higher levels of gene flow among the first ones (Nm=3.756 and 1.066 respectively). No genetic differentiation was encountered among the four subspecies. The populations were homozygous at homologous loci, suggesting high rates of selfing, but they frequently exhibited fixed intergenomic heterozygosity. The meiotic chromosome behaviour and disomic inheritance encountered are in accordance with the previously proposed allopolyploid origin of the species. The diploidsB. arvensis andB. scoparius have been previously implicated in the parentage ofB. hordeaceus on the basis of morphology and serology. We comparedB. hordeaceus with related diploid species belonging to the same section (sectionBromus) using different sources of data (flow cytometry, karyotypes, RAPD and DNA sequences). Molecular phylogeny based on internal transcribed spacer sequences of nuclear ribosomal genes provided the first clear scheme of relationships among monogenomic species of the section. A new hypothesis is proposed concerning the origin ofB. hordeaceus: We found that it diverged earlier than all other species of sectionBromus excluding the diploidB. caroli-henrici which is basal in this group. The 13 autapomorphies accumulated byB. hordeaceus, and the absence of intra-individual sequence heterogeneity are also consistent with the relatively ancient origin of the species within the section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.P. &Rieseberg L.H. (1998): The effects of non-homology in RAPD bands on similarity and multivariate statistical ordination inBrassica andHelianthus.Theor. Appl. Genet. 97: 323–326.

    Article  CAS  Google Scholar 

  • Ainouche M. (1993):Les populations diploides et tétraploides du genre BromusL. section BromusSM. (Poaceae):Analyse de la diversité génétique. PhD. thesis, University of Rennes 1 Rennes.

    Google Scholar 

  • Ainouche M., Misset M. T. &Huon A. (1995): Genetic diversity in Mediterranean diploid and tetraploidBromus L. (sectionBromus Sm.) populations.Genome 38: 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Ainouche M., Misset M. T. &Huon A. (1996): Patterns of genetic differentiation in two annual bromegrasses,Bromus lanceolatus andB. hordeaceus (Poaceae), Pl. Syst. Evol. 199: 65–68.

    Article  Google Scholar 

  • Ainouche M. &Bayer R. J. (1997): On the origins of the tetraploidBromus species (sectionBromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA.Genome 40: 730–743.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong K.C. (1991): Chromosome evolution ofBromus. In:Tsuchiya T. &Gupta P.K. (eds.),Chromosome engineering in plants, Part B, Elsevier Science Publishers, Amsterdam, pp. 363–377.

    Google Scholar 

  • Bachmann K. (1997): Nuclear DNA markers in plant biosystematic research.Opera Bot. 132: 137–148.

    Google Scholar 

  • Baker H.G. (1974): The evolution of weeds.Annual Rev. Ecol. Syst. 5: 1–24.

    Article  Google Scholar 

  • Barrett S.C.H. &Shore J.S. (1989): Isozyme variation in colonizing plants. In:Soltis D.E. &Soltis P.S. (eds.),Isozymes in plant biology, Chapman and Hall, London, pp. 106–126.

    Google Scholar 

  • Baum D.A., Systsma K.J. &Koch P.C. (1994): A phylogenetic analysis ofEpilobium (Onagraceae) based on nuclear ribosomal DNA sequences.Syst. Bot. 19: 363–388.

    Article  Google Scholar 

  • Bremer K. (1988): The limits of amino acid sequence data in angiosperm phylogenetic reconstruction.Evolution 42: 795–803.

    Article  CAS  Google Scholar 

  • Brown A.H.D. &Marshall D.R. (1981): Evolutionary changes accompanying colonization in plants. In:Scudder G.C.E. &Reveal J.L. (eds.),Evolution today, Hunt Institute for Botanical Documentation, carnegie-Mellon University Press, Pittsburgh, pp. 351–363.

    Google Scholar 

  • Da Silva J.A.G. &Sobral B.W.S. (1996): Genetics of polyploids. In:Sobral B.W.S. (ed.),The impact of plant molecular genetics, Birkhäuser, Boston, pp. 3–37.

    Google Scholar 

  • Daehler C.C. (1998): The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agriculture weeds.Biol. Conservation 84: 167–180.

    Article  Google Scholar 

  • Donoghue M., Olmstead R., Smith J. &Palmer J. (1992): Phylogenetic relationships ofDipsacales based onrbcL sequences.Ann. Missouri Bot. Gard. 79: 333–345.

    Article  Google Scholar 

  • Feldman M., Liu B., Segal G., Abbo S., Levy A.A. &Vega J.M. (1997): Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes.Genetics 147: 1381–1387.

    PubMed  CAS  Google Scholar 

  • Felsenstein J. (1985): Confidence limits on phylogenies: an approach using the bootstrap.Evolution 39: 783–791.

    Article  Google Scholar 

  • Govindajaru R.D. (1989): Variation in gene flow levels among predominantly self-pollinated plants.J. Evol. 2: 173–181.

    Article  Google Scholar 

  • Gower J.C. (1966): Some distance properties of latent root and vector use in multivariate analysis.Biometrika 53: 326–338.

    Google Scholar 

  • Jain S.K. (1978): Inheritance of phenotypic plasticity in soft chess,Bromus mollis L. (Gramineae).Experientia 34: 385–386.

    Article  Google Scholar 

  • Hsiao C., Chatterton N.J., Asay K.H. &Jensen K.B. (1994): Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots.Genome 37: 117–120.

    Article  Google Scholar 

  • Hsiao C., Chatterton N.J., Asay K.H. &Jensen K.B. (1995): Molecular phylogeny of thePooideae (Poaceae) based on nuclear rDNA (ITS) sequences.Theor. Appl. Genet. 90: 389–398.

    Article  CAS  Google Scholar 

  • Lamboy W.F. (1994): Computing genetic similarity coefficients from RAPD data: the effects of PCR artefacts.PCR Meth. Appl. 4: 31–37.

    CAS  Google Scholar 

  • Liu B., Vega J.M., Segal G., Abbo S. Rodova M. &Feldman M. (1998): Rapid genomic changes in newly synthesized amphiploids ofTriticum andAegilops. I. Changes in low-copy noncoding DNA sequences.Genome 41: 272–277.

    Article  CAS  Google Scholar 

  • Lönn M. (1993): Genetic structure and allozyme-microhabitat associations inBromus hordeaceus.Oikos 68: 99–106.

    Article  Google Scholar 

  • Meerts P. (1995): Phenotypic plasticity in the annual weedPolygonum aviculare.Bot. Acta 108: 414–424.

    Google Scholar 

  • Meerts P., Baya T. &Lefèbvre C. (1998): Allozyme variation in the annual weed species complexPolygonum aviculare (Polygonaceae) in relation to ploidy level and colonizing ability.Pl. Syst. Evol. 211: 239–256.

    Article  Google Scholar 

  • Misset M.T. &Gourret J.P. (1996): Flow cytometric analysis of the different ploidy levels observed in the genusUlex L. (Faboideae-Genisteae) in Brittany, France.Bot. Acta 109: 72–79.

    Google Scholar 

  • Nei M. (1973): Analysis of gene diversity in subdivided populations.Proc. Natl. Acad. Sci. U.S.A. 70: 3321–3323.

    Article  PubMed  CAS  Google Scholar 

  • Nei M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics 89: 583–590.

    PubMed  Google Scholar 

  • Nei M. &Li W.H. (1979): Mathematical models for studying genetic variation in terms of restriction endonucleases.Proc. Natl. Acad. Sci. U.S.A. 76: 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  • Novack S.J. &Mack R.N. (1993): Genetic variation inBromus tectorum (Poaceae): comparison between native and introduced populations.Heredity 71: 167–176.

    Article  Google Scholar 

  • Pavlick L. (1995): BromusL. of North America. Royal British Columbia Museum, Victoria.

    Google Scholar 

  • Ramsey J. &Schemske D.W. (1998): Pathways, mechanisms, and rates of polyploid formation in flowering plants.Annual Rev. Ecol. Syst. 29: 467–501.

    Article  Google Scholar 

  • Rieseberg L.H. (1996): Homology among RAPD fragments in interspecific comparisons.Molec. Ecol. 5: 99–105.

    Article  CAS  Google Scholar 

  • Rohlf F.J. (1990):NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 1.6. Applied Biostatistics, New York.

    Google Scholar 

  • Romero-Zarco C. (1986): A new method for estimating karyotype asymmetry.Taxon 35: 526–530.

    Article  Google Scholar 

  • Roy J., Navas M.L. &Sonie L. (1991): Invasions by annual bromegrasses: a case study challenging the homoclime approach to invasions. In:Grove R.N. &di Castri F. (eds.),Biogeography of Mediterranean invasions, Cambridge University Press, Cambridge, pp. 205–221

    Google Scholar 

  • Scholz H. (1998):Bromus molliformis. Soc. Ech. Pl. Vasc. Eur. Bass. Médit., Bull. 27 19–20.

    Google Scholar 

  • Sang T., Crawford D.J. &Stuessy T.F. (1995): Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution.Proc. Natl. Acad. Sci. U.S.A. 92: 6813–6817.

    Article  PubMed  CAS  Google Scholar 

  • Song K., Lu P., Tang K. &Osborn T.C. (1995): Rapid genome change in synthetic polyploids ofBrassica and its implications for polyploid evolution.Proc. Natl. Acad. Sci. U.S.A. 92: 7719–7723.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M. &Barton N.H. (1989): A comparison of three indirect methods for estimating average levels of gene flow.Evolution 43: 1349–1368.

    Article  Google Scholar 

  • Smith P.M. (1970): Taxonomy and nomenclature of the bromegrasses.Notes Roy. Bot. Gard. Edinburgh 30: 361–375.

    Google Scholar 

  • Smith P.M. (1972): Serology and relationships in annual bromes (Bromus L. sect.Bromus).Ann. Bot. (London), 36: 1–30.

    Google Scholar 

  • Smith P.M. (1980):Bromus. In:Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Walters S.M. &Webb D.A. (eds.),Flora europaea 5, Cambridge University Press, Cambridge, pp. 319–323.

    Google Scholar 

  • Smith P.M. (1981): Ecotypes and subspecies in annual brome-grasses (Bromus, Gramineae),Bot. Jahrb. Syst. 102: 497–509.

    Google Scholar 

  • Smith P.M. (1983): Proteins, mimicry and microevolution in grasses. In:Jensen U. &Fairbrothers D.E. (eds.),Proteins and nucleic acids in plant systematics, Springer Verlag, Berlin, pp. 319–323.

    Google Scholar 

  • Smith P.M. (1986): Native or introduced? Problems in the taxonomy and plant geography of some widely introduced annual bromegrasses.Proc. Roy. Soc. Edinb. B. 89: 273–281.

    Google Scholar 

  • Soltis D.E. &Soltis P.S. (1993): Molecular data and the dynamic nature of polyploidy.C.R.C. Crit Rev. Pl. Sci. 12: 243–273.

    Article  CAS  Google Scholar 

  • Soltis P. &Doyle J. (1998):Molecular systematics of plants II. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Stebbins G.L. (1981): Chromosomes and evolution in the genusBromus (Gramineae) Bot. Jahrb. Syst. 102: 359–379.

    Google Scholar 

  • Swofford D.L. (1993):PAUP: phylogenetic analysis using—parsimony version 3.1.1. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Warwick S.I. (1990): Allozyme and life history variation in five northwardly colonizing North American weed species.Pl. Syst. Evol. 169: 41–51.

    Article  CAS  Google Scholar 

  • Wendel J.F., Schnabel A. &Seelanan T. (1995): Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).Proc. Natl. Acad. Sci. U.S.A. 92: 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Wendel J.F. &Doyle J.J. (1998): Phylogenetic incongruence: Window into genome history and molecular evolution. In:Soltis P. &Doyle J.J. (eds.),Molecular systematics of plants II, Kluwer Academic Publishers, Boston, pp. 265–296.

    Google Scholar 

  • Whitkus R. (1988): Modified version of GENESTAT. A program for computing genetic statistics from allelic frequency data.Pl. Genet. Newslett. 4: 10.

    Google Scholar 

  • Williams G.K., Kubelik A.R., Livak K.L., Rafalski J.A. &Tingey S.V. (1990): DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acid Res. 18: 6531–6535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika L. Ainouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainouche, M.L., Bayer, R.J., Gourret, JP. et al. The allotetraploid invasive weedBromus hordeaceus L. (Poaceae): Genetic diversity, origin and molecular evolution. Folia Geobot 34, 405–419 (1999). https://doi.org/10.1007/BF02914919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914919

Keywords

Navigation