Skip to main content
Log in

The fatigue resistance of TiAl-based alloys

  • Fatigue Behavior
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

TiAl-based alloys are a class of intermetallic alloys that show potential as a high-temperature structural material. Many applications considered for TiAl-based alloys require certain damage-tolerance characteristics. In this article, the fatigue resistance of two-phase TiAl alloys is reviewed to assess the current understanding of the fatiguedamage processes in this class of emerging materials. Salient features of fatigue-crack growth and stress-life curves are summarized to identify the challenges these fatigue characteristics present in the life assessment of TiAl components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim and D.M. Dimiduk,JOM, 43 (8) (1991), pp. 40–47.

    CAS  Google Scholar 

  2. Y.-W. Kim,JOM, 46 (7) (1994), pp. 30–40.

    CAS  Google Scholar 

  3. D.M. Dimidul,Gamma Titanium Aluminides, eds. Y.-W. Kim, R. Wagner, and M. Yamaguchi (Warrendale, PA: TMS, 1995), pp. 3–20.

    Google Scholar 

  4. C.M. Austin and T.J. Kelly, in Ref. 3,, pp. 21–32.

    Google Scholar 

  5. W.E. Dowling, Jr., et al.,Microstructure/Property Relationships in Titanium Aluminides and Alloys, eds. Y.-W. Kim and R.R. Boyer (Warrendale, PA: TMS, 1991), pp. 123–133.

    Google Scholar 

  6. B. London et al.,Structural Intermetallics, ed. R. Darolia et al. (Warrendale, PA: TMS, 1993), pp. 151–157.

    Google Scholar 

  7. D.S. Shih et al.,Microstructure/Property Relationships in Titanium Aluminides and Alloys, eds. Y.-W. Kim and R.R. Boyer (Warrendale, PA: TMS, 1991), pp. 135–148.

    Google Scholar 

  8. K.S. Chan and Y.-W. Kim,Met. Trans. A, 23A (1992), pp. 1663–1677.

    Article  CAS  Google Scholar 

  9. K.S. Chan,Met. Trans. A, 24A (1993), pp. 569–583.

    Article  CAS  Google Scholar 

  10. K.S. Chan, in Ref. 3,, pp. 835–847.

    Google Scholar 

  11. K.S. Chan and Y.-W. Kim,Acta Met. et Mat., 43 (1995), pp. 439–451.

    Article  CAS  Google Scholar 

  12. C.T. Liu et al.,Intermetallics, 4 (1996), pp. 429–440.

    Article  CAS  Google Scholar 

  13. K.S. Chan and D.S. Shih,Met. Mat. Trans. A, 28A (1997), pp. 79–90.

    Article  CAS  Google Scholar 

  14. K.S. Chan and D.S. Shih, submitted toMet. Mat. Trans. A.

  15. P. Bowen, N.J. Rogers, and A.W. James, in Ref. 3,, pp. 849–865.

    Google Scholar 

  16. D.L. Davidson and J.B. Campbell,Metall. Trans., 24A (1993), pp. 1555–1574.

    CAS  Google Scholar 

  17. W.O. Soboyejo, J.E. Deffeyes, and P.B. Aswath,Mat. Sci. Eng., A138 (1991), pp. 95–101.

    Article  Google Scholar 

  18. S.J. Balsone et al.,Scripta Met. et Mat., 32 (1995), pp. 1653–1658.

    Article  CAS  Google Scholar 

  19. J.M. Larsen et al., in Ref. 3,, pp. 821–834.

    Google Scholar 

  20. W.V. Vaidya, K.-H. Schwalbe and R. Wagner in Ref. 3,, pp. 867–874.

    Google Scholar 

  21. S.J. Trail and P. Bowen, in Ref. 3,, pp. 883–892.

    Google Scholar 

  22. K.T. Venkateswara Rao, Y.-W. Kim, and R.O. Ritchie,Scripta Met. et Mat., 33 (1995), pp. 459–465.

    Article  CAS  Google Scholar 

  23. K.T. Venkateswara Rao et al.,Mat. Sci. Eng., A192/193 (1995), pp. 474–482.

    Article  Google Scholar 

  24. K.T. Venkateswara Rao, Y.-W. Kim, and R.O. Ritchie, in Ref. 3,, pp. 893–901.

    Google Scholar 

  25. K.S. Chan and D.L. Davidson,Structural Intermetallics, eds. R. Darolia et al. (Warrendale, PA: TMS, 1993), pp. 223–230.

    Google Scholar 

  26. H. Clements et al., in Ref. 3,, pp. 717–726.

    Google Scholar 

  27. Y. Umakoshi, H.Y. Yasuda, and T. Nakano,Intermetallics, 4 (1996), pp. 565–575.

    Article  Google Scholar 

  28. M. Tsutsumi et al.,Intermetallics, 4 (1996), pp. 577–583.

    Article  Google Scholar 

  29. R. Gnanamoorthy, Y. Mutoh, and Y. Mizuhara,Intermetallics, 4 (1996), pp. 525–532.

    Article  CAS  Google Scholar 

  30. R. Gnanamoorthy et al.,Scripta Metallurgica et Maternalia, 33 (6) (1995), pp. 907–912.

    Article  CAS  Google Scholar 

  31. J.P. Campbell et al., submitted toScripta Materialia.

  32. D.L. Davidson et al., unpublished research (San Antonio, TX: Southwest Research Institute, 1997).

  33. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie,Fatigue of Advanced Materials, eds. R.O. Ritchie, R.H. Dauskardt, and B.N. Cox (Birmingham, UK: MCEP, 1991), pp. 429–436.

    Google Scholar 

  34. K.S. Chan,Met. Trans. A, 22A (1991), pp. 2021–2029.

    Article  CAS  Google Scholar 

  35. K.S. Chan,Microstructure/Property Relationships of Titanium Alloys, eds. S. Ankem and J.A. Hall, (Warrendale, PA: TMS, 1994), pp. 303–311.

    Google Scholar 

  36. Y.-W. Kim, in Ref. 3,, pp. 637–654.

    Google Scholar 

  37. R.W. Hertzberg,Deformation and Fracture Mechanics of Engineering Materials (New York: Wiley & Sons, 1976), pp. 448–451.

    Google Scholar 

  38. T. Pollock and P.S. Steif,PRET: A University-Industry Partnership for Research and Transition of Gamma Titanium Aluminides, Annual Report (Pittsburgh, PA: Carnegie-Mellon University, 1996).

    Google Scholar 

Download references

Authors

Additional information

K. S. Chan earned his Ph.D. in metallurgical engineering from the Michigan Technological University in 1980. He is currently an institute scientist at Southwest Research Institute. Dr. Chan is also a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. The fatigue resistance of TiAl-based alloys. JOM 49, 53–58 (1997). https://doi.org/10.1007/BF02914769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914769

Keywords

Navigation