Skip to main content
Log in

The mechanical properties of in-situ composites

  • In-Situ Composites
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Because in-situ composites offer such a wide selection of reinforcement types, size, and volume fractions, understanding the mechanisms controlling mechanical properties will allow more intelligent decisions to be made when tailoring a composite system for a specific application. This article provides an overview of the mechanical properties of discontinuously reinforced metal-ceramic and intermetallic-ceramic composites produced by in-situ techniques. Systems for which the mechanisms controlling mechanical properties are known are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Fishman,In-Situ Composites: Science and Technology. ed. M. Singh and D. Lewis (Warrendale, PA: TMS, 1994), p. 1.

    Google Scholar 

  2. J.M. Brupbacher, L. Christodoulou, and D.C. Nagle, U.S. patent 4,710,348 (1987).

    Google Scholar 

  3. L. Christodoulou, D.C. Nagle, and J.M. Brupbacher, U.S. patent 4,774,052 (1988).

    Google Scholar 

  4. D.C. Nagle, J.M. Brupbacher, and L. Christodoulou, U.S. patent 4,916,029 (1990).

    Google Scholar 

  5. N.P. Suh, U.S. patent 4,278,622 (1981).

  6. M.J. Koczak and K.S. Kumar, U.S. patent 4,808,372 (1989).

    Google Scholar 

  7. V. Shtessel, S. Sampath, and M. Koczal:IN-Situ Composites: Science and Technology, ed. M. Singh and D. Lewis (Warrendale, PA: TMS, 1994), p. 37.

    Google Scholar 

  8. S.D. Dunmead et al., U.S. patent 4,909-842 (1990).

  9. P.R. Taylor and M. Manrique,Processing and Fabrication of Advanced Materials IV, ed. T.S. Srivatsan and J.J. Moore (Warrendale, PA: TMS, 1996), p. 827.

    Google Scholar 

  10. C.R. Cupp,Progress in Metal Physics, 4 (1953), p. 151.

    Article  Google Scholar 

  11. C.H. Henager, Jr., J.L. Brimhall, and L.N. Brush,Mater. Sci. Eng., A195 (1995), p. 65.

    Article  Google Scholar 

  12. M.J. Luton et al.,Multicomponent Ultrafine Microstructures, Mater. Res. Soc. Symp Proc., 132, ed. L.E. McCandis et al. (Pittsburg, PA: MRS, 1989), p. 79.

    Google Scholar 

  13. R.M. Aikin, Jr., and L. Christodoulous,Scripta Metall., 25 (1991), p. 9.

    Article  CAS  Google Scholar 

  14. M. Tayar,Mater. Trans. JIM, 32 (1991), p. 1.

    Google Scholar 

  15. A. Kelly,Strong Solids (Oxford, U.K.: Clarendon Press, 1966), p. 123.

    Google Scholar 

  16. V.C. Nardone and K.M. Prewo,Scripta Metall., 20 (1986), p. 43.

    Article  CAS  Google Scholar 

  17. V.C. Nardone,Scripta Metall., 21 (1987), p. 1313.

    Article  CAS  Google Scholar 

  18. G. Bao, J.W. Hutchinson, and R.M. McMeeking,Acta Metall. Mater., 39 (1991), p. 1871.

    Article  Google Scholar 

  19. C.L. Hom and R.M. McMeeking,Int. J. Plasticity, 7 (1991), p. 255.

    Article  Google Scholar 

  20. R.J. Arsenault and R.M. Fisher,Scripta Metall., 17 (1983), p. 67.

    Article  CAS  Google Scholar 

  21. Y. Flom and R.J. Arsenault,Mater. Sci. Eng., 75 (1985), p. 151.

    Article  CAS  Google Scholar 

  22. R.J. Arsenault and N. Shi,Mater. Sci. Eng, 81 (1986), p. 175.

    Article  CAS  Google Scholar 

  23. M. Volgelsang, R.J. Arsenault, and R.M. Fisher,Metall. Trans. A, 17 (1986), p. 379.

    Article  Google Scholar 

  24. C.T. Kim, J.K. Lee, and M.R. Plichta,Metall. Trans. A, 21 (1990), p. 673.

    Article  Google Scholar 

  25. P.M. Kelly,Int. Metall. Rev., 18 (1973), p. 31.

    Google Scholar 

  26. M.E. Kassner and X. Li,Scripta Metall., 25 (1991), p. 2833.

    Article  CAS  Google Scholar 

  27. L. Anand and J. Gurland,Metall. Trans. A, 7 (1976), p. 191.

    Google Scholar 

  28. G. Wassermann,Proc. 2nd Int. Conf on the Strength of Metals and Alloys (Metals Park, OH: ASM, 1970), p. 1188.

    Google Scholar 

  29. P.D. Funkenbusch and T.H. Courtney,Scripta Metall., 15 (1981), p. 1349.

    Article  CAS  Google Scholar 

  30. W.A. Spitzig, A.R. Pelton, and F.C. Laabs,Acta Metall., 35 (1987), p. 2427.

    Article  CAS  Google Scholar 

  31. S.V. Kamat, J.P. Hirth, and R. Mehrabian,Acta Metall., 37 (1989), p. 2395.

    Article  CAS  Google Scholar 

  32. P. Sahoo and M.J. Koczakl,Mater. Sci. Eng., A131 (1991), p. 69.

    Article  Google Scholar 

  33. H. Nakata, T. Choh, and N. Kanetake,J. Mater. Sci., 30 (1995), p. 1719.

    Article  CAS  Google Scholar 

  34. A.K. Kuruvilla et al.,Sripta Metall., 24 (1990), p. 873.

    Article  CAS  Google Scholar 

  35. Z.Y. Ma et al.,Scripta Metall., 31 (1994), p. 635.

    Article  CAS  Google Scholar 

  36. M.K. Premkumar and M.G. Chu,Mater. Sci. Eng., A202 (1995), p. 172.

    Article  Google Scholar 

  37. T.J. Langan and J.R. Pickens,Scripta Metall., 25 (1991), p. 1587.

    Article  CAS  Google Scholar 

  38. I. Gotman, M.J. Koczak, and E. Shtessel,Mater. Sci. Eng., A187 (1994), p. 189.

    Article  Google Scholar 

  39. R.M. Aikin, Jr.,Ceram. Eng. Sci. Proc., 12 (1991), p. 1643.

    Article  CAS  Google Scholar 

  40. R.M. Aikin, Jr.,Mater. Sci. Eng., A155 (1992), p. 121.

    Article  Google Scholar 

  41. R.M. Aikin, Jr.,Scripta Metall., 26 (1992), p. 1025.

    Article  CAS  Google Scholar 

  42. S.A. Maloy et al.,Acta Metall. Mater., 40 (1992), p. 3159.

    Article  CAS  Google Scholar 

  43. S.A. Maloy, T.E. Mitchell, and A.H. Heuer,Acta Metall. Mater., 43 (1995), p. 657.

    Article  CAS  Google Scholar 

  44. R.M. Aikin, Jr.,International Symp. on Structural Intermetallics, ed. R. Darolia et al. (Warrendale, PA: TMS, 1993), p. 791.

    Google Scholar 

  45. C.H. Henager, Jr., J.L. Brimhall, and J.P. Hirth,Mater. Sci. Eng., A155 (1992), p. 109.

    Article  Google Scholar 

  46. S.L. Kampe et al.:Metall. Trans. A, 25 (1994), p. 2181.

    Article  Google Scholar 

  47. S.L. Kampe et al.,Intermetallic Matrix Composites III. Mat. Res. Soc. Symp. Proc. 350, ed. J.A. Grayes, R.R. Bowman, and J.J. Lewandowski (Pittsburgh, PA: MRS, 1994), p. 159.

    Google Scholar 

  48. M.L. VanMeter, S.L. Kampe, and L. Christodoulou,Scripta Met., 34 (1996), p. 1251.

    Article  CAS  Google Scholar 

  49. Z.P. Xing et al.,Metall. Trans. A, 28 (1997), p. 1079.

    Article  Google Scholar 

  50. R.M. Aikin, Jr., P.E. McCubbin, and L. Christodoulou,Intermetallic Matrix Composites, MRS Symp. Proc., 194, ed. D.L. Anton et al. (Pittsburgh, PA: MRS, 1990., p. 307.

    Google Scholar 

  51. N.C. Beck Tan, R.M. Aikin, Jr., and R.M. Briber,Metall. Trans. A., 25 (1994), p. 2461.

    Article  Google Scholar 

  52. J.R. Rice and M.A. Johnson,Inelastic Behavior of Solids, ed. M.F. Kannine et al. (New York: McGraw-Hill, 1980), p. 641.

    Google Scholar 

  53. G.T. Hahn and A.R. Rosenfield,Metall. Trans. A, 6 (1975), p. 653.

    Google Scholar 

  54. K.S. Kumar, S.K. Mannan, and R.K. Viswanadham,Acta Metall., 40 (1992), p. 1201.

    Article  CAS  Google Scholar 

  55. G.T. Vyletel, D.C. Van Aken, and J.E. Allison,Scripta Metall., 25 (1991), p. 2405.

    Article  CAS  Google Scholar 

  56. P.E. Krajewski, J.W. Jones, and J.E. Allison,Metall. Trans. A, 26 (1995), p. 3107.

    Article  Google Scholar 

  57. P.E. Krajewski, J.E. Allison, and J.W. Jones,Metall. Trans. A, 24 (1993), p. 2731.

    Google Scholar 

  58. S.L. Kampe, J.K. Bryant, and L. Christodoulou,Metall. Trans. A, 22 (1991), p. 447.

    Google Scholar 

  59. P.L. Martin et al.,Proc. Fourth Int. Conf. On Crep and Fracture of Engineering Materials and Structures (London: OM, 1990), p. 265.

    Google Scholar 

  60. K. Sadananda et al.,Structural Intermetallics, ed. R. Darolia et al. (Warrendale, PA: TMS, 1993,. p. 809.

    Google Scholar 

  61. J.D. Whittenberger et al.,J. Mater. Sci., 25 (1990), p. 35.

    Article  CAS  Google Scholar 

  62. J.D. Whittenberger, E. Arzt, and M.J. Luton,J. Mater. Res., 5 (1990), p. 2819.

    Article  CAS  Google Scholar 

  63. J.D. Whittenberger, E. Arzt, and M.J. Luton,Scripta Metall., 26 (1992), p. 1925.

    Article  CAS  Google Scholar 

  64. T.R. Bieler, J.D. Whittenberger, and M.J. Luton,High-Temperature Ordered Intermetallic Alloys V. Mat. Res. Soc. Symp. Proc. Vol. 288 (Pittsburgh, PA: MRS, 1993), p. 1149.

    Google Scholar 

  65. M. Suzuki, S.R. Nutt, and R.M. Aikin, Jr.,Intermetallic Matrix Composites II, MRS Symp Proc., 273, ed. D.B. Miracle, D.L. Anton, and J.A. Graves (Pittsburgh, PA: MRS, 1992), p. 267.

    Google Scholar 

  66. M. Suzuki, S.R. Nutt, and R.M. Aikin, Jr.,Mater. Sci. Eng., 162 (1993), p. 73.

    Article  Google Scholar 

Download references

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article can be found at http://www.tms.org/pubs/journals/JOM/9708/Aikin-9708.html.

Robert M. Aikin, Jr., earned his Ph.D. in metallurgical engineering at Michigan, Technological University in 1987. He is currently an associate professor at Case Western Reserve University. Dr. Aikin is also a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aikin, R.M. The mechanical properties of in-situ composites. JOM 49, 35–39 (1997). https://doi.org/10.1007/BF02914400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914400

Keywords

Navigation