Skip to main content
Log in

The integrated multiscale modeling of diamond chemical vapor deposition

  • Modeling Materials Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The fundamental mechanisms of diamond growth occur on the atomic scale; however, the geometry of the deposition reactor and the other operating parameters directly affect the chemical composition of the gas and the temperature at the growth surface. The properties are, in turn, controlled by both atomic- and microstructural-scale features. By developing diamond-growth models at each length scale and coupling the output of one model into the next, a comprehensive simulation scheme for diamond deposition is realized. This approach provides the missing link between chemical vapor deposition reactor design/operating conditions and the material structure/properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. DeVries,Ann. Rev. Mater. Sci., 17 (1987), pp. 161–187.

    Article  CAS  Google Scholar 

  2. F.G. Celii and J.E. Butler,Ann. Rev. Phys. Chem., 42 (1991), pp. 643–684.

    Article  CAS  Google Scholar 

  3. J.E. Butler and R.L. Woodin,Phil. Trans. R. Soc. Lond. A, 342 (1993), pp. 209–224.

    Article  CAS  Google Scholar 

  4. K.E. Spear and J.P. Dismukes, eds.,Sunthetic Diamond: Emerging CVD Science and Technology, Electrochemical Society Series, New York: Wiley, 1994).

    Google Scholar 

  5. M.A. Prelas, G. Popovici, and L.K. Bigelow,Handbook of Industrial Diamonds and Diamond Films (New York: Dekker, 1997).

    Google Scholar 

  6. J.E. Field,The Properties of Natural and Synthetic Diamond (London: Academic Press, 1992).

    Google Scholar 

  7. J.C. Angus and C.C. Hayman,Science, 214 (1988), pp. 913–921.

    Article  Google Scholar 

  8. M. Frenklach and K.E. Spear,J. Mater. Res., 3 (1988), pp. 133–140.

    Article  CAS  Google Scholar 

  9. M. Frenklach and H. Wang,Phys. Rev. B, 43 (1991), pp. 1520–1545.

    Article  CAS  Google Scholar 

  10. D.G. Goodwin and J.E. Butler,Handbook of Industrial Diamonds and Diamond Flims, ed. M.A. Prelas, G. Popovici, and L.K. Bigelow (New York: Dekker, 1997), pp. 527–582.

    Google Scholar 

  11. T. DebRoy et al.J. Appl. Phys., 68, (1990), pp. 2424–2432.

    Article  CAS  Google Scholar 

  12. S.J. Harris and A.M. Weiner,J. Appl. Phys., 67 (1990), pp. 6520–6526.

    Article  CAS  Google Scholar 

  13. M.E. Coltrin and D.S. Dandy,J. Appl. Phys., 74 (1993), pp. 5803–5820.

    Article  CAS  Google Scholar 

  14. D.S. Dandy and M.E. Coltrin,J. Appl. Phys., 76 (1994), pp. 3102–3113.

    Article  CAS  Google Scholar 

  15. D.S. Dandy and M.E. Coltrin,Appl. Phys. Lett., 66 (1995), pp. 391–393.

    Article  CAS  Google Scholar 

  16. H.R. Thorsheun and J.E. Butler,Synthetic Diamond Emerging CVD Science and Technology, ed. K.E. Spear and J.P. Dismukes (New York, Wiev, 1994), pp. 193–242.

    Google Scholar 

  17. I.I. Connell et al.J. Appl. Phys., 78 (1995), pp. 3622–3634.

    Article  CAS  Google Scholar 

  18. D.D. Koleske et al.J. Chem. Phys. 102 (1995), pp. 992–1002.

    Article  CAS  Google Scholar 

  19. J.E. Butler et al.,Wide Band Gap Electronic Materials, ed. M.A. Prelas, G. Popovici, and L.K. Bigelow (New York: Kluwer Academic, 1998), pp. 105–114.

    Google Scholar 

  20. B.D. Thomas and J.E. Butler,Surf. Sci., 328 (1995), pp. 291–301.

    Article  Google Scholar 

  21. J.A. Miller and C.T. Bowman,Prog. Energy Combust. Sci., 15 (1989), p. 287.

    Article  CAS  Google Scholar 

  22. J.A. Miller and C.F. Mellus,Combust. Flame, 91 (1992), p. 21.

    Article  CAS  Google Scholar 

  23. C.T. Bowman et al.,GRI-Mech, http://www.me.berkeley.edu/gri_mech/ (1996).

  24. D.G. Goodwin and G.G. Gaviller,J. Appl. Phys., 68 (1990), pp. 6393–6400.

    Article  CAS  Google Scholar 

  25. E. Meeks et al.,Combustion and Flame, 92 (1993), pp. 144–160.

    Article  CAS  Google Scholar 

  26. B.W. Yu and S.L. Girshick,J. Appl. Phys., 75 (1994), pp. 3914–3923.

    Article  CAS  Google Scholar 

  27. N.G. Glumac and D.G. Goodwin,Combustion and Flame, 105 (1996), p. 321.

    Article  CAS  Google Scholar 

  28. K. Tankala and T.K. DebRoy,J. Appl. Phys., 72 (1992), pp. 712–718.

    Article  CAS  Google Scholar 

  29. Y.A. Mankelevich, A.T. Rakhimov, and N.V. Suetin,Diam. Rel. Mater. 4 (1995), pp. 1065–1068.

    Article  CAS  Google Scholar 

  30. Y.A. Mankelevich, A.T. Rakhimov, and N.V. Suetin,Dian. Rel. Mater. 5 (1996), pp. 888–894.

    Article  CAS  Google Scholar 

  31. K. Hassouni et al.,J. de Physiaue III, 6 (1996), pp. 1229–1243.

    Article  CAS  Google Scholar 

  32. E. Hyman et al.,J. of Vac. Sci. and Tech., A, 12 (1994), pp. 1474–1799.

    Article  CAS  Google Scholar 

  33. D.N. Belton and S.J. Harris,J. Chem. Phys., 96 (1992), pp. 2371–2377.

    Article  CAS  Google Scholar 

  34. S.J. Harris and D.G. Goodwin,J. Phys. Chem., 97 (1993), pp. 23–28.

    Article  CAS  Google Scholar 

  35. D.S. Dandy and M.E. Coltrin,J. Mater. Res., 10 (1995), pp. 1993–2010.

    Article  CAS  Google Scholar 

  36. E.J. Dawnkaski, D. Srivastava, and B.J. Garrison,J. Chem. Phys., 104 (1996), pp. 5997–6008.

    Article  CAS  Google Scholar 

  37. M.M. Clark, L.M. Raff, and H.L. Scott,Comp. in Phys., 10 (1996), pp. 584–590.

    Article  Google Scholar 

  38. B.J. Garrison et al.,Science, 255 (1992), pp. 835–838.

    Article  CAS  Google Scholar 

  39. S. Skokov, B. Weiner, and M. Frenklach,J. Phys. Chem., 99 (1995), pp. 5616–5625.

    Article  CAS  Google Scholar 

  40. C.C. Battalle, D.J. Srolovitz, and J.E. Butler,J. Appl. Phys., in press.

  41. A.B. Bortz, M.H. Kaics, and J.L. Lebowitz,J. Comp. Phys., 17 (1975), pp. 10–18.

    Article  Google Scholar 

  42. K.E. Spear,J. Amer. Ceram. Soc., 72 (1989), pp. 171–191.

    Article  CAS  Google Scholar 

  43. C. Wild et al.,Diam. Rel. Mater., 2 (1993), pp. 158–168.

    Article  CAS  Google Scholar 

  44. G.V. Saparin,Diam. Rel Mater., 3 (1994), pp. 1337–1351.

    Article  CAS  Google Scholar 

  45. W.L. Hsu,Appl. Phys. Lett., 59, (1991), pp. 1427–1429.

    Article  CAS  Google Scholar 

  46. C. Wolden, S. Mitra, and K.K. Gleason,J. Appl. Phys., 72 (1992), pp. 3750–3758.

    Article  CAS  Google Scholar 

  47. D.G. Goodwin,Appl. Phys. Lett., 59 (1991), pp. 277–279.

    Article  CAS  Google Scholar 

  48. Y.A. Mankelevich, A.T. Rakhimov, and N.V. Suetin,Plasma Phys. Rep., 21 (1995), p. 872.

    Google Scholar 

  49. C.C. Battaile, D.J. Srolovitz, and J.E. Butler, Diam. Rel. Mater., in press.

Download references

Authors

Additional information

David J. Srolovitz earned his Ph.D. in materials science and engineering at the University of Pennsylvania in 1981. He is currently Edward DeMille Campbell Professor of Materials Science and Engineering and professor of applied sciences at the University of Michigan. Dr. Srolovitz is also a member of TMS.

David S. Dandy earned his Ph.D. In chemical engineering at California Institute of Technology in 1987. He is currently a professor of chemical and bloresource engineering at Colorado State University.

James E. Butler earned his Ph.D. in chemical physics at the University of Chicago in 1972. He is currently head of the Gas/Surface Dynamics Section at the Naval Research Laboratory.

Corbett C. Battaile earned his M.S. in materials science and engineering at Vanderbilt University in 1992. He is currently a graduate student and research assistant at the University of Michigan. Mr. Battaile is also a member of TMS.

Paritosh earned his B.E. In chemical engineering at the University of Roorkee, India, in 1993. He is currently a graduate student and research assistant at the University of Michigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srolovitz, D.J., Dandy, D.S., Butler, J.E. et al. The integrated multiscale modeling of diamond chemical vapor deposition. JOM 49, 42–47 (1997). https://doi.org/10.1007/BF02914350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914350

Keywords

Navigation