Skip to main content
Log in

The influence of applied stress and stress sense on grain boundary precipitate morphology in a nickel-base superalloy during creep

  • Transformations
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Creep induced instability of strengthening precipitates at grain boundaries is of general concern in the applications of many high temperature alloys. Having shown that the general validity of the existing mechanism for such an instability in nickel-base superalloys may be considered suspect, this paper reports and discusses the effects of both tensile and compressive creep on γ′ grain boundary precipitate morphology in an alloy consisting of γ′ (Ni3Al) precipitates in a γ (nickel solid solution) matrix. We find that the uniform distribution of γ′ precipitates is altered by the application of uniaxial creep stress, with the stress-induced precipitate morphology depending strongly on stress sense. Tensile creep results in the dissolution of γ′ precipitates at grain boundaries aligned more or less transverse to the stress axis, with an accompanying increase in volume fraction of γ′ precipitates at grain boundaries oriented parallel to, or almost parallel to the stress axis. In contrast, the reverse change in morphology occurs during compressive creep. The observed morphology changes and their dependence on stress sense are shown to be consistent with the flow of chromium atoms from grain boundaries that are under normal compression towards grain boundaries that are under normal tension. The results conclusively demonstrate that Herring-Nabarro type diffusion in multiphase, polycrystalline alloys can cause chemical changes in grain boundary regions which, in the extreme, result in phase changes at grain boundaries. The results and proposed mechanism are discussed in terms of the findings of other investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Tien and S. M. Copley:Met. Trans., 1971, vol. 2, p. 215.

    Article  CAS  Google Scholar 

  2. J. K. Tien and S. M. Copley:Met. Trans., 1971, vol. 2, p. 543.

    Article  CAS  Google Scholar 

  3. C. P. Sullivan and M. P. Donachie, Jr.:Metals Eng. Quart., 1967, vol. 7, p. 36.

    CAS  Google Scholar 

  4. D. McLean:J. Inst. Metals, 1956, vol. 85, p. 468.

    Google Scholar 

  5. R. F. Decker:Symposium on Steel Strengthening Mechanisms, p. 147, Climax Molybdenum Co, Greenwich, Conn., 1970.

    Google Scholar 

  6. R. F. Decker and J. W. Freeman:Trans. TMS-AIME, 1960, vol. 218, p. 277.

    Google Scholar 

  7. M. J. Fleetwood:J. Inst. Metals, 1961–62, vol. 90, p. 429.

    Google Scholar 

  8. C. W. Weaver:J. Inst. Metals, 1961–62, vol. 90, p. 404.

    Google Scholar 

  9. G. N. Maniar:J. Inst. Metals, 1963, vol. 91, p. 350.

    Google Scholar 

  10. O. H. Kriege and J. M. Baris:Trans. ASM, 1969, vol. 62, p. 195.

    CAS  Google Scholar 

  11. J. R. Mihalisin and D. L. Pasquine:Intern. Symp. on Structural Stability in Superalloys, Seven Springs, Pa., Sept., 1968.

  12. E. L. Raymond:Trans. TMS-AIME, 1967, vol. 239, p. 1415.

    CAS  Google Scholar 

  13. C. H. Wells and C. P. Sullivan:ASTM Spec. Tech. Publ. 459, 1969, p. 59.

    Google Scholar 

  14. D. J. Wilson:NASA Rept. 04368-16T, 1969.

  15. L. R. Woddyatt, C. T. Sims, and H. J. Beattie, Jr.:Trans. TMS-AIME, 1966, vol. 236, p. 519.

    Google Scholar 

  16. C. T. Sims:J. Metals, 1966, vol. 18, p. 1119.

    CAS  Google Scholar 

  17. A. Taylor and R. W. Floyd:J. Inst. Metals, 1952–53, vol. 81, p. 451.

    Google Scholar 

  18. F. R. N. Nabarro:Report of a Conference on the Strength of Solids, p. 75, Physical Society, London, 1948.

    Google Scholar 

  19. C. Herring:J. Appl. Phys., 1950, vol. 21, p. 437.

    Article  Google Scholar 

  20. G. B. Fedorov, E. A. Smimov, and F. I. Zhomov:Met. i Metallog. Chistykh Metallov, 1963, vol. 4, p. 110, AERE Trans. 1031, by J. J. Cornish, Atomic Energy Research Establishment, Harwell, 1965.

  21. P. L. Farnsworth and R. L. Coble:J. Am. Ceram. Soc., 1966, vol. 49, p. 264.

    Article  CAS  Google Scholar 

  22. R. L. Coble:J. App. Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  23. R. L. Squires, R. T. Weiner, and M. Phillips:J. Nucl. Mater., 1963, vol. 8, p. 77.

    Article  CAS  Google Scholar 

  24. J. E. Harris and R. B. Jones:J. Nucl. Mater., 1963, vol. 10, p. 360.

    Article  CAS  Google Scholar 

  25. A. Karim, D. L. Holt, and W. A. Backofan:Trans. TMS-AIME, 1969, vol. 245, p. 1131.

    CAS  Google Scholar 

  26. C. Crussard, J. Plateau, and G. Henry:Joint Intern. Conf. on Creep, p. 1–91, Inst. Mech. Engrs., London, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, J.K., Gamble, R.P. The influence of applied stress and stress sense on grain boundary precipitate morphology in a nickel-base superalloy during creep. Metall Trans 2, 1663–1667 (1971). https://doi.org/10.1007/BF02913891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913891

Keywords

Navigation