Skip to main content
Log in

Yield of polygonized aluminum single crystals

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Large single crystal segments of aluminum were produced by strain anneal, deformed in tension, and sectioned to produce tensile specimens with axes parallel to the original tensile axis and with other orientations. The specimens were annealed to produce a polygonized substructure. Their critical shear stress in tension was determined. The critical shear stress was shown to be the sum of a substructure independent stress and a stress proportional to the square root of the average primary subboundary misorientation over the average primary subboundary spacing. Comparison of the critical shear stress of specimens cut from the same parent crystal with varying tensile axes demonstrated that the significant subboundary spacing is that between primary subboundaries along the active slip plane of the specimen. The tests also showed that average subboundary misorientation is significant because it represents the average spacing of dislocations in the subboundaries. The results, interpreted in terms of current substructure strengthening theories, indicate that slip is propagated across primary subboundaries by the activation of dislocation sources in the subboundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Ball:Phil. Mag., 1957, vol. 2, pp. 1011–17.

    Article  CAS  Google Scholar 

  2. J. T. McGrath and G. B. Craig:Trans. TMS-AIME, 1959, vol. 215, pp. 1022–25.

    CAS  Google Scholar 

  3. D. Ye. Ovsienko and Ye I. Sosnina:Phys. Metals Metallog., 1962, vol. 14, pp. 252–57.

    CAS  Google Scholar 

  4. F. Hultgren:Trans. TMS-AIME, 1964, vol. 230, pp. 898–903.

    Google Scholar 

  5. G. L. Montgomery: Ph.D. Thesis, University of Toronto, 1964.

  6. J. S. H. Lake and G. B. Craig:Trans. ASM, 1968, vol. 61, pp. 829–33.

    Google Scholar 

  7. J. Herenguel and R. Second:Mem. Sci. Rev. Met. 1968, vol. 48, pp. 262–66.

    Google Scholar 

  8. J. S. H. Lake, G. L. Montgomery, and G. B. Craig:Can. Met. Quart., 1970, vol. 9, pp. 403–07.

    CAS  Google Scholar 

  9. J. Rezek and G. B. Craig:Trans. TMS-AIME, 1961, vol. 221, pp. 715–20.

    CAS  Google Scholar 

  10. U. F. Kocks and T. J. Brown:Acta Met., 1966, vol. 14, pp. 87–98.

    Article  CAS  Google Scholar 

  11. F. C. Frank:Defects in Crystailine Solids, pp. 150–51, Carnegie Institute of Technology, Pittsburgh, 1950.

    Google Scholar 

  12. E. O. Hall:Proc. Phys. Soc., London, 1951, vol. 64B, pp. 747–53.

    Google Scholar 

  13. J. C. M. Li:Trans. TMS-AIME, 1963, vol. 227, pp. 239–47.

    CAS  Google Scholar 

  14. J. P. Hirth and J. Lothe:Theory of Dislocations, pp. 694–718, McGraw Hill, New York, 1968.

    Google Scholar 

  15. J. C. M. Li:Electron Microscopy and Strength of Crystals, pp. 713–79, Interscience, New York, 1963.

    Google Scholar 

  16. J. S. H. Lake and G. B. Craig: Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada, unpublished research.

  17. A. H. Cottrell:Trans. TMS-AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  18. J. S. H. Lake: Ph.D. Thesis, University of Toronto, 1969.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, J.S.H., Craig, G.B. Yield of polygonized aluminum single crystals. Metall Trans 2, 1579–1586 (1971). https://doi.org/10.1007/BF02913880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913880

Keywords

Navigation