Skip to main content
Log in

Error estimation and adaptive procedures based on superconvergent patch recovery (SPR) techniques

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The paper discusses error estimation and adaptive finite element procedures for elasto-static and dynamic problems based on superconvergent patch recovery (SPR) techniques. The SPR is a postprocessing procedure to obtain improved finite element solutions by the least squares fitting of superconvergent stresses at certain sampling points in local patches. An enhancement of the original SPR by accounting for the equilibirum equations and boundary conditions is proposed. This enhancement improves the quality of postprocessed solutions considerably and thus provides an even more effective error estimate. The patch configuration of SPR can be either the union of elements surrounding a vertex node, thenode patch, or, the union of elements surrounding an element, theelement patch. It is shown that these two choices give normally comparable quality of postprocessed solutions. The paper is also concerned with the application of SPR techniques to a wide range of problems. The plate bending problem posted in mixed form where force and displacement variables are simultaneously used as unknowns is considered. For eigenvalue problems, a procedure of improving eigenpairs and error estimation of the eigenfrequency is presented. A postprocessed type of error estimate and an adaptive procedure for the semidiscrete finite element method are discussed. It is shown that the procedure is able to update the spatial mesh and the time step size so that both spatial and time discretization errors are controlled within specified tolerances. A discontinuous Galerkin method for solving structural dynamics is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulwahab, F. (1995),Postprocessing Techniques and Adaptivity in the Finite Element Method. Ph.D. Thesis, Publ. 95:8, Dept. of Structural Mechanics, Chalmers University of Technology, Sweden.

    Google Scholar 

  2. Abdulwahab, F. and Wiberg, N.-E. (1996), “Quality assured plate solution”, ECCOMAS'96, John Wiley & Sons.

  3. Andreev, A.B. and Lazarov, R.D. (1986), “Superconvergence of the gradient for quadratic triangular finite elements”,Numer. Methods P.D.E.'s,4, 15–32.

    Article  MathSciNet  Google Scholar 

  4. Avrashi, J. and Cook, R.D. (1993), “New error estimation for C0 eigenproblems in finite element analysis”,Eng. Comput.,10, 243–256.

    Article  Google Scholar 

  5. Babuska, I. (1993), “Courant element: before and after”,Finite Element Methods, fifty years of the Courant element, M. Krizek, P. Neittaanmaki and R. Stenberg (eds.), 37–52.

  6. Babuska, I. and Gui, W. (1986), “Basic principles of feedback and adaptive approaches in the finite element method”,Comput. Methods Appl. Mech. Eng.,55, 27–42.

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuska, I., Strouboulis, T., Updhay, C.S., Gangaraj, S.K. and Copps, K. (1994), “Validation of a posteriori error estimators by numerical approach”,Int. J. Num. Methods Eng.,37, 1073–1123.

    Article  MATH  Google Scholar 

  8. Bakker, M. (1981), “A note on C0 Galerkin methods for two point boundary problems”,Numer. Math.,38, 447–453.

    Article  MathSciNet  Google Scholar 

  9. Barlow, J. (1976). “Optimal stress location in finite element method”,Int. J. Num. Methods Eng.,10, 243–251.

    Article  MATH  Google Scholar 

  10. Belytschko, T. and Tabbara, M. (1993), “H-adaptive finite element methods for dynamic problems, with emphasis on localization”,Int. J. Numer. Methods Eng.,36, 4245–4265.

    Article  MATH  Google Scholar 

  11. Bernspång, L., Küssner, M., Samuelsson, A., Wriggers, P. (1995), “The Consistent Strain Method in Finite Element Plasticity”,Comp. & Struct.,54, No. 1, 27–33.

    Article  MATH  Google Scholar 

  12. Blacker, T. and Belytschko, T. (1994), “Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements”,Int. J. Numer. Methods Eng.,37, 517–536.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cantin, G., Loubignac, G. and Touzot, G. (1978), “An iterative algorithm to build continuous stress and displacement solutions”,Int J. Numer. Methods Eng.,12, 1493–1506.

    Article  MATH  Google Scholar 

  14. Chen, C. M. (1981), “Superconvergence of the finite element solutions and their derivatives”,Numer. Math. J. Chinese Univ.,3, 118–125.

    MathSciNet  MATH  Google Scholar 

  15. Cook, R.D. (1982), “Loubignac's iterative method in finite element elastostatics”,Int J. Numer. Methods Eng.,18, 319–335.

    Google Scholar 

  16. Demkowicz, L., Oden, J.T. and Babuska, I (eds.), (1992),Proceedings of the Second Workshop on Reliability in Computational Mechanics, Technical Univ. of Cracow, Cracow, Poland, Oct. 1991,Comput. Methods Appl. Mech. Engrg.,101.

  17. Douglas, J. and Dupont, T. (1974), “Galerkin approximations for the two point boundary problems using continuous piecewise polynomials”,Numer. Math.,22, 99–109.

    Article  MathSciNet  MATH  Google Scholar 

  18. Friberg, O., Möller, P., Makovicka, D. and Wiberg, N.E. (1987), “An adaptive procedure for eigenvalue problems using hierarchical finite element method”,Int. J. Num. Meth. Engng.,24, 319–335.

    Article  MATH  Google Scholar 

  19. Hughes, T.J.R. and Hulbert, G. (1988), “Space-time finite element methods for elastodynamics: Formulations and error estimates”,Comput. Methods Appl. Mech. Engrg.,66, 339–363.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hulbert, G. (1989), “Space-time finite element methods for second order hyperbolic equations”, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, Stanford.

    Google Scholar 

  21. Hulbert, G. and Hughes, T.J.R. (1990), “Space-time finite element methods for second order hyperbolic equations”,Comput. Methods Appl. Mech. Engng.,84, 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hulbert, G. (1992), “Time finite element methods for structural dynamics”,Int. J. Numer. Meth. Engng.,33, 307–331.

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, C. (1993), “Discontinuous Galerkin finite element methods for second order hyperbolic problems”,Comput. Meth. Appl. Mech. Engng.,107, 117–129.

    Article  MATH  Google Scholar 

  24. Joo, K.J. and Wilson, E.L. (1988), “An adaptive finite element technique for structural dynamic analysis”,Comput. & Struct.,30, 1319–1339.

    Article  MATH  Google Scholar 

  25. Krizck, M. and Neittaanmki, P. (1987), “On superconvergence techniques”,Acta Appl. Math.,9, 175–198.

    Article  MathSciNet  Google Scholar 

  26. Kvamsdal, T. and Okstad, K.M. (1995), “Superconvergent patch recovery based on polynomials satisfying interior equilibrium”, R. Larsson and N.-E. Wiberg (eds.),NSCM VIII, Eighth Nordic Seminar on Computational Mechanics.

  27. Larsson, R., Runesson, K. and Ottosen, N.S. (1993), “Discontinuous displacement approximation for capturing plastic localization”,Int. J. Numer. Meth. Engng.,36, 2087–2105.

    Article  MATH  Google Scholar 

  28. Lesaint, P. and Zlamal (1979), “Superconvergence of the gradient of finite element solutions’,RAIRO Anal. Numer.,13, 139–166.

    MathSciNet  MATH  Google Scholar 

  29. Levine, N. (1985), “Stress sampling points for linear triangles in the finite element methods”,Numer. Anal.,5, 407–427.

    Article  MATH  Google Scholar 

  30. Li, X.D. (1996), “Adaptive Finite Element Procedures in Structural Dynamics”, Ph.D. thesis, Publ 96:2, Dept. of Structural Mechanics, Chalmers Univ. of Technology, Sweden.

    Google Scholar 

  31. Li, X.D. and Wiberg, N.-E. (1994), “A posteriori error estimate by element patch postprocessing, adaptive analysis in energy and L2 norms”,Comput. & Struct.,53, 907–919.

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X.D. and Wiberg, N.-E. (1996), “Structural dynamic analysis by a time-discontinuous Galerkin finite element method”,Int. J. Numer. Meth. Engng.,39, 2131–2152.

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, X.D. and Wiberg, N.-E. (1995), “Implementation and adaptivity of a space-time finite element method in structural dynamics”, Publ. 95:17, Dept. of Structural Mechanics, Chalmers Univ. of Technology, (submitted toComput. Methods Appl. Mech. Engng.).

  34. Li, X.D., Zeng, L.F. and Wiberg, N.-E. (1993), “A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis”,Commun. Numer. Meth. Engng.,9, 273–292.

    Article  MATH  Google Scholar 

  35. Mackerle, J., (1994), “Error analysis, adaptive techniques and finite and boundary elements—A bibliography (1992–1993)”,Finite Elements in Analysis and Design,17, 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  36. Mackinnon, R.J. and Carey, G.F. (1989), “Superconvergent derivatives: A Taylor series analysis”,Int. J. Numer. Meth. Engng.,28, 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  37. Möller, P.M. (1993), “High-order hierarchical A- and L-stable integration methods”,Int. J. Numer. Meth. Engng.,36, 2607–2624.

    Article  MATH  Google Scholar 

  38. Newmark, N.M. (1959), “A method of computation for structural dynamics”,J. Eng. Mech. Div., ASCE,8, 67–94.

    Google Scholar 

  39. Owen, D.R.J., Oñate, E. and Hinton E. (eds.). (1992), “Computational Plasticity: Fundamentals and Applications”,Proceedings of the Third International Conference, held in Barcelona, Spain, Pincridge Press, Swansca, U.K.

    Google Scholar 

  40. Selman, A. and Hinton, E. (1993), “Two dimensional transient dynamic analysis with adaptive mesh refinement”,Commun. Numer. Meth. Engng.,9, 825–836.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wahlbin, L.B. (1991), “Local behaviour in finite element methods”, In: P.G. Ciarlet and J.L. Lions (eds.), “Handbook of Numerical Analysis”, Vol. II, Finite Element Method (Part 1), Elsevier, 355–522.

  42. Wahlbin, L.B. (1995), “Superconvergence in Galerkin finite element methods”,Lecture notes in Mathematics 1605, Springer-Verlag, Berlin/Heidelberg.

    MATH  Google Scholar 

  43. Wiberg, N.-E. and Abdulwahab, F. (1992), “An efficient postprocessing technique for stress problems based on superconvergent derivatives and equilibrium”, In Ch. Hirshet al. (eds.), “Numerical Methods in Engineering '92, Elsevier, Amsterdam, 25–32.

    Google Scholar 

  44. Wiberg, N.-E. and Abdulwahab, F. (1993), “Patch Recovery based on superconvergent derivatives and equilibrium”,Int. J. Numer. Meth. Engng.,36, 2703–2724.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wiberg, N.-E. and Abdulwahab, F. (1994), “Error estimation with postprocessed FE-solutions”,Proceeding 2nd Conf. on Comp. Struc. Technology, Athens, Greece.

  46. Wiberg, N.-E., Abdulwahab, F. and Ziukas, S. (1994), “Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions”,Int. J. Numer. Meth. Engng.,37, 3417–3440.

    Article  MathSciNet  MATH  Google Scholar 

  47. Wiberg, N.-E., Abdulwahab, F. and Ziukas, S. (1995), “Improved element stresses for node and element patches using superconvergent patch recovery”,Commun. Numer. Meth. Engng.,11, 619–627.

    Article  MATH  Google Scholar 

  48. Wiberg, N.-E. and Bausys, R. (1995), “Error estimation for eigenfrequencies and eigenmodes in dynamics”, Pahl & Werner (eds.),Computing in Civil and Building Engineering. Balkena, Rotterdam, 611–616.

    Google Scholar 

  49. Wiberg, N.-E., Bausys, R. and Hager P. (1996), “Improved eigenfrequencies and eigenmodes in free vibration analysis”,3rd Int. Conf. Comp. Struct. Technology, Budapest, Hungary, August 21–23.

  50. Wiberg, N.-E. and Li, X.D. (1993), “A postprocessing technique and an a posteriori error estimate for the Newmark method in dynamic analysis”.Earthquake Engng. Struct. Dyn.,22, 465–489.

    Article  Google Scholar 

  51. Wiberg, N.-E. and Li, X.D. (1993), “Earthquake response analysis of a concrete dam by an adaptive time-stepping algorithm”,International Symposium on Application of Computer Methods in Rock Mechanics and Engineering, Xian, China, May 24–28.

  52. Wiberg, N.-E. and Li, X.D. (1994), “Superconvergent patch recovery of finite element solution and a posteriori L2 norm error estimate”,Commun. Numer. meth. Engng.,10, 313–320.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wiberg, N.-E. and Li, X.D. (1994), “A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis”,Int. J. Numer. Meth. Engng.,37, 3583–3603.

    Article  MathSciNet  Google Scholar 

  54. Wiberg, N.-E. and Li, X.D. (1995), “A HPC-solver for dynamics with quality assurance”, Publ. 95:16, Dept. of Structural Mechanics, Chalmers Univ. of Technology.

  55. Wiberg, N.-E., Li, X.D. and Abdulwahab, F. (1996), “Adaptive finite element procedures in clasticity and plasticity”,Engineering with Computers,12, 120–141.

    Article  Google Scholar 

  56. Wiberg, N.E. and Möller, P. (1988), “Formulation and solution of hierarchical finite element equations”,Int. J. Numer. Meth. Engng.,26, 1213–1233.

    Article  MATH  Google Scholar 

  57. Wiberg, N.E., Zeng, L.F. and Li, X.D. (1992), “Error estimation and adaptivity in elastodynamics”,Comput. Meth. Appl. Mech. Engng.,101, 369–395.

    Article  MathSciNet  MATH  Google Scholar 

  58. Wilson, R.R. (1985), “Two dimensional and plate bending applications”, C.A. Brebbia, H. Tottenham, G.B. Warburton, J.M. Wilson and R.R. Wilson (eds.),Vibrations of engineering structures, Lecture notes in engineering, Springer-Verlag 130–147.

  59. Zeng, L.F. and Wiberg, N.-E. (1992), “Spatial mesh adaptation in semidiscrete finite element analysis of linear elastodynamic problems”,Comput. Mech.,9, 5, 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  60. Zienkiewicz, O.C. and Zhu, J.Z. (1987), “A simple error estimator and adaptive procedure for practical engineering analysis”,Int. J. Numer. Meth. Engng. 24, 333–357.

    Article  MathSciNet  Google Scholar 

  61. Zienkiewicz, O.C. and Zhu, J.Z. (1992a) “The superconvergent patch recovery and a posteriori error estimators, Part I: The recovery technique”,Int. J. Numer. Meth. Engng.,33, 1331–1364.

    Article  MathSciNet  MATH  Google Scholar 

  62. Zienkiewicz, O.C. and Zhu, J.Z. (1992b), “The superconvergent patch recovery and a posteriori error estimators, Part II, Error estimates and adaptivity”,Int. J. Numer. Meth. Engng.,33, 1365–1382.

    Article  MathSciNet  MATH  Google Scholar 

  63. Zlamal, M. (1978), “Superconvergence of the gradient for quadratic triangular finite elements”,Math. Comput.,32, 663–685.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiberg, N.E., Abdulwahab, F. & Li, X.D. Error estimation and adaptive procedures based on superconvergent patch recovery (SPR) techniques. Arch Computat Methods Eng 4, 203–242 (1997). https://doi.org/10.1007/BF02913818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913818

Keywords

Navigation