Skip to main content
Log in

Computer-assisted morphometry of the intracapillary leukocyte pool in the rabbit lung

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Computer-assisted morphometry was performed to evaluate the number and cell characteristics of capillary and alveolar leukocytes in rabbit lungs. An image-processing system and a programmable spreadsheet program were used, which allowed morphometric analysis of a large reference area. Neutrophils represented the largest intracapillary leukocyte population (2.2×107/ml parenchyma, which corresponds to an approximately 104-fold microvascular enrichment of this cell type related to cell counts calculated for the capillary blood volume). In addition, large numbers of intracapillary lymphocytes (1.7×107/ml parenchyma; 47-fold enrichment) and monocytes (0.3×107/ml parenchyma; 86-fold enrichment) were detected. The total count of pulmonary leukocytes thus approximated the total number of pulmonary endothelial cells; and the total circulating pools of the different leukocytes were surpassed by the corresponding lung capillary pools, 3.2-fold for neutrophils, 1.2-fold for lymphocytes and 4.8-fold for monocytes. In contrast, alveolar cell numbers ranged from 1–2% of the capillary counts for all types of leukocytes. We conclude that the rabbit lung microvasculature harbours large pools of immunocompetent cells, which may contribute to host-defense mechanisms at the gas-exchange area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachofen H, Wangensteen D, Weibel ER (1982) Surfaces and volumes of alveolar tissue under zone II and zone III conditions. J Appl Physiol 53:879–885

    PubMed  CAS  Google Scholar 

  • Barry BE, Crapo JD (1985) Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am Rev Respir Dis 132:548–555

    PubMed  CAS  Google Scholar 

  • Barton RW, Rothlein R, Ksiazek J, Kennedy C (1989) The effect of anti-intercellular adhesion molecule-1 on phorbol-ester-induced rabbit lung inflammation. J Immunol 143:1278–1282

    PubMed  CAS  Google Scholar 

  • Berman JS, Beer DJ, Theodore AC, Kornfeld H, Bernardo J, Center DM (1990) Lymphocyte recruitment to the lung. Am Rev Respir Dis 142:238–257

    PubMed  CAS  Google Scholar 

  • Bessis M (1973) Living blood cells and their ultrastructure. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brigham KL, Meyrick B (1984) Interactions of granulocytes with the lungs. Circ Res 54:623–635

    PubMed  CAS  Google Scholar 

  • Chang L-Y, Mercer RR, Pinkerton KE, Crapo JD (1991) Quantifying lung structure. Experimental design and biologic variation in various models of lung injury. Am Rev Respir Dis 143:625–634

    PubMed  CAS  Google Scholar 

  • Cohen AB, Batra G, Petersen R, Podany J, Nguyen D (1979) Size of the pool of alveolar neutrophils in normal rabbit lungs. J Appl Physiol 47/2:440–444

    Google Scholar 

  • Courtice FC (1943) The blood volume of normal animals. J Physiol 102:290–305

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Foscue HA, Shelburne J (1980) Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis 122:123–143

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 125:332–337

    Google Scholar 

  • Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO (1983) Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 128:S42-S46

    PubMed  CAS  Google Scholar 

  • Doerschuk CM, Allard MF, Martin BA, MacKenzie A, Autor AP, Hogg JC (1987) Marginated pool of neutrophils in rabbit lungs. J Appl Physiol 63:1806–1815

    PubMed  CAS  Google Scholar 

  • Doerschuk CM, Downey GP, Doherty DE, English D, Gie RP, Ohgami M, Worthen GS, Henson PM, Hogg JC (1990) Leukocyte and platelet margination within microvasculature of rabbit lungs. J Appl Physiol 68:1956–1961

    PubMed  CAS  Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system: V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol 44:61–86

    Article  PubMed  CAS  Google Scholar 

  • Haies GM, Gil J, Weibel JR (1981) Morphometric study of rat lung cells: I. Numerical and dimensional characteristics of parenchymal cell population. Am Rev Respir Dis 123:533–541

    PubMed  CAS  Google Scholar 

  • Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65/3:513–525

    Google Scholar 

  • Hogg JC (1987) Neutrophil kinetics and lung injury. Physiol Rev 67:1249–1295

    PubMed  CAS  Google Scholar 

  • Pabst R (1990) Compartmentalization and kinetics of lymphoid cells in the lung. Reg Immunol 3:62–71

    PubMed  CAS  Google Scholar 

  • Pabst R, Binns RM (1989) Heterogeneity of lymphocyte homing physiology: several mechanisms operate in the control of migration to lymphoid and non-lymphoid organs in vivo. Immunol Rev 108:83–109

    Article  PubMed  CAS  Google Scholar 

  • Pabst R, Binns R, Licence ST, Peter M (1987) Evidence of a selective major vascular marginal pool of lymphocytes. Am Rev Respir Dis 136:1213–1218

    PubMed  CAS  Google Scholar 

  • Paumgartner D, Losa G, Weibel ER (1981) Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. J Microsc 121/1:51–63

    Google Scholar 

  • Pinkerton KE, Barry BE, O'Neil JJ, Raub A, Pratt PC, Crapo JD (1982) Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am J Anat 164:155–174

    Article  PubMed  CAS  Google Scholar 

  • Rybicka K, Daly BDT, Migliore JJ, Norman JC (1974) Intravascular macrophages in normal calf lung. An electron microscopic study. Am J Anat 139:353–368

    Article  Google Scholar 

  • Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57–60

    PubMed  CAS  Google Scholar 

  • Schmid-Schönbein GW, Shih YY, Chien S (1980) Morphometry of human leucocytes. Blood 56:866–875

    PubMed  Google Scholar 

  • Schneeberger-Keeley EE, Burger EJ (1970) Intravascular macrophages in cat lungs after open chest ventilation. An electron microscopic study. Lab Invest 22:361–369

    PubMed  CAS  Google Scholar 

  • Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501

    PubMed  CAS  Google Scholar 

  • Tsubouchi T, English D, Doerschuk CM (1991) Monocytes accumulation in the lung after chronic endotoxemia in rabbits. Am Rev Respir Dis 143:A329

    Google Scholar 

  • Warner AE, Brain JD (1986) Intravascular pulmonary macrophages: a novel cell removes particles from blood. Am J Physiol 250:R728-R732

    PubMed  CAS  Google Scholar 

  • Warner AE, Barry BE, Brain JD (1986) Pulmonary intravascular macrophages in sheep. Morphology and function of a novel constituent of the mononuclear phagocyte system. Lab Invest 55:276–288

    PubMed  CAS  Google Scholar 

  • Warner AE, Molina RM, Brain JD (1987) Uptake of bloodborne bacteria by pulmonary intravascular macrophages and consequent inflammatory responses in sheep. Am Rev Respir Dis 136:683–690

    PubMed  CAS  Google Scholar 

  • Warner AE, DeCamp MM, Bellows CF, Brain JD (1990) Endotoxemia enhances lung uptake of circulating particles in species lacking pulmonary intravascular macrophages. Am Rev Respir Dis 139:A158

    Google Scholar 

  • Watanabe I, Donahue S, Hoggatt N (1967) Method for electron microscopic studies of circulating human leucocytes and observation on their fine structure. J Ultrastruct Res 20:366–382

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Weibel ER (1972) Morphometric estimation of pulmonary diffusion capacity: V. Comparative morphometry of alveolar lungs. Respir Physiol 14:26–43

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1973) Morphological basis of alveolar-capillary gas exchange. Physiol Rev 53/2:419–495

    Google Scholar 

  • Weibel ER (1979) Stereological methods: I. Practical methods for biological morphometry, vol 1. Academic Press, London

    Google Scholar 

  • Winkler GC (1988) Pulmonary intravascular macrophages in domestic animal species: Review of structural and functional properties. Am J Anat 181:217–234

    Article  PubMed  CAS  Google Scholar 

  • Winkler GC, Cheville NF (1987) Postnatal colonization of porcine lung capillaries by intravascular macrophages: an ultrastructural, morphometric analysis. Microvasc Res 33:224–232

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Detmers PA (1988) Adhesion-promoting receptors on phagocytes. J Cell Sci 9[Suppl]:99–120

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This publication represents a portion of the requirements for the fulfillment of the degree of Doctor of Medicine by L. Ermert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermert, L., Seeger, W. & Duncker, HR. Computer-assisted morphometry of the intracapillary leukocyte pool in the rabbit lung. Cell Tissue Res 271, 469–476 (1993). https://doi.org/10.1007/BF02913729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913729

Key words

Navigation