Skip to main content
Log in

Superconductivity and dislocation cell structure in niobium: Stress effects

  • Alloy Phases and Structure
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

To investigate the mechanism for the development of large anisotropic resistive critical fields in deformed niobium, the dependence of the parallel critical fieldH on stress σ was measured in both compression and tension, for severely deformed niobium composites. the magnitude of ∂H /∂ σ increased with strain up to a value of 27 times that of annealed niobium. Also, both tension and compression increasedH . Both of these discrepancies from the thermodynamic predictions can be ascribed to the presence of double-ended dislocation pileups in the cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Pearson and R. M. Rose:Met. Trans., 1970, vol. 1, p. 377.

    CAS  Google Scholar 

  2. D. C. Hill and R. M. Rose:Appl. Phys. Letters, 1970, vol. 17, p. 66.

    Article  CAS  Google Scholar 

  3. D. C. Hill and R. M. Rose:Met. Trans., 1971, vol. 2, pp. 585–89.

    Article  CAS  Google Scholar 

  4. K. M. Ralls:Phys. Letters, 1966, vol. 23, p. 29.

    Article  CAS  Google Scholar 

  5. C. R. Hu and V. Korenman:Phys. Rev., 1969, vol. 178, p. 684.

    Article  CAS  Google Scholar 

  6. D. R. Tilley:J. Phys. C, 1968, vol. 1, p. 243.

    Article  Google Scholar 

  7. E. A. Lynton:Superconductivity, 2nd ed., p. 16, Methuen Monograph, London, 1964.

    Google Scholar 

  8. J. L. Olsen, K. Andres, H. Meier and H. de Salaberry:Z. Naturf. Sch., 1963, vol. 18A, p. 125.

    CAS  Google Scholar 

  9. B. Hillenbrand:Z. Angew. Phys., 1969, vol. 27, p. 12.

    Google Scholar 

  10. K. Luders:Z. Phys., 1966, vol. 193, p. 65.

    Article  Google Scholar 

  11. G. A. Alers and D. L. Waldorf:Phys. Rev. Letters, 1961, vol. 6, p. 677.

    Article  CAS  Google Scholar 

  12. J. P. Hirth and J. Lothe:Theory of Dislocations, chap. 12, McGraw-Hill, New York, 1968.

    Google Scholar 

  13. R. L. Fleischer:Phys. Letters, 1962, vol. 3, p. 111.

    Article  Google Scholar 

  14. H. Mughrabi:Phil. Mag., 1968, vol. 18, p. 1211.

    Article  CAS  Google Scholar 

  15. J. D. Livingston and H. W. Schadler:Prog. Mater. Sci., 1964, vol. 12, p. 185.

    Article  Google Scholar 

  16. M. McKeehan and B. E. Warren:J. Appl. Phys., 1953, vol. 24, p. 52.

    Article  CAS  Google Scholar 

  17. D. C. Hill: Ph. D. Thesis, Department of Metallurgy, M.I.T., Cambridge, Mass., 1970.

  18. W. De Sorbo:Phys. Rev., 1963, vol. 132, p. 107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

D. C. HILL, formerly National Science Foundation Trainee, Department of Metallurgy and Materials Science Massachusetts Institute of Technology, Cambridge, Mass.

M.I.T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, D.C., Rose, R.M. Superconductivity and dislocation cell structure in niobium: Stress effects. Metall Trans 2, 1433–1437 (1971). https://doi.org/10.1007/BF02913372

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913372

Keywords

Navigation