Skip to main content
Log in

Correlation of creep elongation and substructure in aluminum-stainless steel composites

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The tensile creep behavior and associated substructural detail have been characterized in aluminum-stainless steel composites at ambient temperature. Volume fractions in the range 0 to 0.33 were tested under constant load conditions (in the range 1.0 to 4.0 times macroscopic yield stress) with the load applied parallel to the direction of reinforcement. In both unreinforced aluminum and the composites, steady-state creep conditions are established in <100 hr; creep rates are in the range 1.2×10−7 in. per in. per hr to 5×10−4 in. per in. per hr, depending on stress and volume fraction reinforcement. The stainless steel reinforcement significantly reduces the creep rate at a given stress level. The steady-state creep rates are in good agreement with behavior predicted by an exponential form of the rule-of-mixtures equation relating creep rate to applied stress and volume fraction reinforcement. The matrix (experimental) and stainless steel wire (rule-of-mixtures analysis) give an exponential dependence of creep rate on stress with power exponents of 2.7 and 3.3, respectively. At a given level of creep strain dislocation substructure in the aluminum matrix is independent of distance from the interface; alternatively, the substructure is independent of volume fraction of reinforcement and is controlled only by the total strain in the composite. Similar behavior has been established previously in this system for time-independent uniaxial tensile or compressive loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. McDanels, R. W. Jech, and J. W. Weeton:Trans. TMS-AIME, 1965, vol. 233, p. 636.

    Google Scholar 

  2. I. Ahmad, V. P. Greco, and J. M. Barranco:J. Comp. Mater., 1967, vol. 1, p. 18.

    CAS  Google Scholar 

  3. H. P. Cheskis and R. W. Heckel:Met. Trans., 1970, vol. 1, p. 1931.

    Article  CAS  Google Scholar 

  4. S. Bhattacharyga and N. M. ParikhMet. Trans., 1970, vol. 1, p. 1437.

    Google Scholar 

  5. D. L. McDanels, R. W. Jech, and J. W. Weeton:Metal Progr., 1960, vol. 78, p. 118.

    Google Scholar 

  6. D. Cratchley:Met. Rev., 1965, vol. 10, p. 79.

    CAS  Google Scholar 

  7. A. Kelly and W. R. Tyson:J. Mech. Phys. Solids, 1965, vol. 13, p. 329.

    Article  CAS  Google Scholar 

  8. A. G. Metcalfe:J. Comp. Mater., 1967, vol. 1, p. 356.

    Article  CAS  Google Scholar 

  9. K. Kreider and M. Marciano:Trans. TMS-AIME, 1969, vol. 245, p. 1279.

    CAS  Google Scholar 

  10. B. A. Wilcox and A. H. Clauer:Trans. TMS-AIME, 1969, vol. 245, p. 935.

    CAS  Google Scholar 

  11. M. R. Pinnel and A. Lawley:Met. Trans., 1970, vol. 1, p. 1337.

    CAS  Google Scholar 

  12. D. L. McDanels, R. A. Signorelli, and J. W. Weeton:Am. Soc. Testing Mater. Spec. Publ., no. 427, 1967, p. 124.

    Google Scholar 

  13. A. Kelly and W. R. Tyson:J. Mech. Phys. Solids, 1966, vol. 14, p. 177.

    Article  CAS  Google Scholar 

  14. K. C. Antony and W. H. Chang:Trans. ASM, 1968, vol. 61, p. 550.

    CAS  Google Scholar 

  15. E. M. Lenoe: AFML-TR-67-125, May 1967, p. 41.

  16. E. G. Ellison and B. Harris:Appl. Mater. Res., 1966, vol. 5, p. 33.

    CAS  Google Scholar 

  17. R. Kossowsky:Met. Trans., 1970, vol. 1, p. 1909.

    Article  CAS  Google Scholar 

  18. J. L. Walter and H. E. Cline:Met. Trans., 1970, vol. 1, p. 1221.

    CAS  Google Scholar 

  19. E. M. Breinan and K. G. Kreider:Met. Trans., 1970, vol. 1, p. 93.

    Article  CAS  Google Scholar 

  20. D. Cratchley and A. A. Baker:Am. Ceramic Soc. Bull., 1967, vol. 46, p. 141.

    Google Scholar 

  21. A. Kelly and G. J. Davies:Metals Rev., 1965, vol. 10, p. 1.

    CAS  Google Scholar 

  22. A. R. T. DeSilva:J. Mech. Phys. Solids, 1968, vol. 16, p. 169.

    Article  Google Scholar 

  23. M. R. Pinnel and A. Lawley:Proc. Elec. Microscopy Soc. of Am., 26th Annual Meeting, 1968, p. 334.

  24. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, MacMillan Co., New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinnel, M.R., Lawley, A. Correlation of creep elongation and substructure in aluminum-stainless steel composites. Metall Trans 2, 1415–1422 (1971). https://doi.org/10.1007/BF02913369

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913369

Keywords

Navigation