Skip to main content
Log in

The effects of temperature and strain rate on the strength of beryllium sheet

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The stress-strain behavior and the deformation dynamics of compression rolled and hot upset beryllium sheet prepared from SR powder were investigated in tension over the range 25° to 355°C. The true stress-true strain curves were approximated by the relationσ =σ(0) + 1/2. Both σ(0) andh decreased with temperature. σ(0) was higher at all temperatures for the compression rolled sheet, whereash was the same for the two materials. The difference in σ(0) was in the athermal component of the stress. The effects of temperature and strain rate on the flow-stress of the polycrystalline sheet agreed with those for prism slip in single crystals. Thermal activation analysis of the deformation dynamics yielded values of 123 to 158 b3 for the activation volume, 1.5×107 sec−1 for the preexponential factor and 1.8 ev (0.18 μb3) for the activation energy,Ho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McLean:Conf. Int. Metallurgie du Beryllium, Presses, Univ. de France. Paris, 1965, p. 3.

    Google Scholar 

  2. H. Conrad and I. Perlmutter: Beryllium as a Technological Material,Conf. Int. Metallurgie du Beryllium, Presses, Univ. de France, Paris, 1965, p. 319.

    Google Scholar 

  3. H. Conrad: Thermally Activated Deformation of Metals,J. Metals, 1964, vol. 16, p. 582.

    CAS  Google Scholar 

  4. F. W. Cooke, M. Herman, and H. Conrad:Met. Trans., 1971, vol. 2, p.

  5. R. N. Orava, G. Stone, and H. Conrad:ASTM Trans. Quart., 1966, vol. 59, p. 171.

    CAS  Google Scholar 

  6. H. Conrad, S. Feuerstein, and L. Rice:Mater. Sci. Eng., 1967, vol. 2, p. 157.

    Article  CAS  Google Scholar 

  7. H. Conrad and R. Jones: Effects of Interstitial Content and Grain Size on the Mechanical Behavior of Alpha Titanium below 0.4T m , inScience Technology and Application of Titanium, R. Jaffee and N. Promisel, eds., Pergamon Press, Oxford, 1970.

    Google Scholar 

  8. M. I. Jacobson:Beryllium Technology, p. 259. Gordon and Breach, New York, 1966.

    Google Scholar 

  9. J. M. Logerot:Conf. Int. Metallurgie Beryllium, Presses, Univ. de France, Paris, 1965, p. 471.

    Google Scholar 

  10. M. Kawaskiet al.: Studies on the Mechanical Properties of Japanese Beryllium,Conf. Int. Metallurgie Beryllium, Presses, Univ. de France, Paris, 1965, p. 625.

    Google Scholar 

  11. A. E. Riesen and R. T. Ault: Mechanical Properties of Beryllium, WADD-TR-60-425, Sept. 1960.

  12. A. Brown, F. Morrow, and A. Martin:J. Less-Common Metals, 1961, vol. 3, p. 62.

    Article  CAS  Google Scholar 

  13. J. Baicry, P. Petrequin, J. P. Gauthier, and M. Weisz:Conf. Int. Metallurgie du Beryllium, Presses Univ. de France, Paris, 1965, p. 385.

    Google Scholar 

  14. W. W. Beaver and B. B. Lympany:Conf. Int. Metallurgie du Beryllium, Presses Univ. de France, Paris, 1965, p. 489.

    Google Scholar 

  15. E. C. Bernett: Evaluation of the Short-Time Mechanical Properties of Structural Beryllium, ASME preprint No. 61-AU-42, presented in Los Angeles, Mar. 12–16, 1961. Abstract only pub.Mech. Eng., 1961, vol. 83, p. 74.

  16. W. J. Salmen and L. P. Gobble:Proc. Am. Soc. Testing Mater., 1962, vol. 162, p. 653.

    Google Scholar 

  17. G. J. Giemza: Development and Evaluation of Structural Beryllium, Martin Co. Report RR-10, April 1959.

  18. W. F. Davenport and W. G. Reufer: Low Temperature Properties of Beryllium, Acronantics Div., Ford Motor Co., DMIC No. 58013, April 2, 1963.

  19. R. Jenkinset al.: Development of Improved Fabricating Methods, Processes and Techniques for Producing Typical Aircraft Shapes from Beryllium, ML-TDR-64-108, May 29, 1964.

  20. P. Regnier, T. M. DuPouy, and Y. Adda:Conf. Int. Metallurgie du Beryllium, p. 273, Pressess Univ. de France, Paris, 1965.

    Google Scholar 

  21. G. London, V. Damiano, and H. Conrad:Trans. TMS-AIME, 1968, vol. 242, p. 979.

    CAS  Google Scholar 

  22. H. Conrad, G. London, and V. Damiano:Anisotropy in Single-Crystal Refractory Compounds, vol. 2, F. W. Vahldick and S. A. Mersol, eds., p. 153, Plenum, New York, 1968.

    Google Scholar 

  23. J. Hull and H. Conrad: Thermally Activated Deformation of α-Zirconium and α-Zirconium Alloy below 0.4T m ,FIRL Rept. F-Cl834, Aug. 1967.

  24. P. Regnier and J. M. DuPouy.Prismatic Slip in Beryllium, Proc. Int. Conf. Strength of Metals and Alloys, Trans. Japan Inst. Metals (suppl.), 1968, vol. 9, p. 826.

    CAS  Google Scholar 

  25. H. Conrad, J. Blades, and B. Lalevic:Critical Evaluation of the Mechanical Behavior of Beryllium, The Franklin Institute Research Laboratories Report AFML-TR-66-332, Oct. 1966, Philadelphia, Pa.

  26. H. Wiedersich:J. Metals, 1964, vol. 16, p. 425.

    CAS  Google Scholar 

  27. R. L. Jones and H. Conrad:Trans. TMS-AIME, 1969, vol. 245, p. 779.

    CAS  Google Scholar 

  28. H. Conrad:Canadian J. Phys., 1967, vol. 45, p. 581.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

H. CONRAD, formerly with the Franklin Institute Research Laboratories

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H., Cooke, F.W. The effects of temperature and strain rate on the strength of beryllium sheet. Metall Trans 2, 1307–1313 (1971). https://doi.org/10.1007/BF02913353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913353

Keywords

Navigation