Advertisement

Folia Geobotanica

, 33:133 | Cite as

Environmental relationships of vegetation patterns in saltmarshes of central Argentina

  • Juan José Cantero
  • José Manuel Cisneros
  • Martin Zobel
  • Alberto Cantero
Article

Abstract

We describe vegetation-environment relationships in the saltmarshes of central Argentina. Gradient analysis (Detrended canonical correspondence analysis, DCCA) was performed involving 14 parameters of the groundwater that account for most of the variation in plant communities. We used a stepwise multivariate procedure to classify the vegetation data into 8 clusters, named according to the most abundant characteristic species:Chloris canterai, Cynodon dactylon, Distichlis, spicata, Spartina densiflora andPaspalum vaginatum clusters, containing relevés of tall grassland communities, andAtriplex undulata, Cyclolepis genistoides andHeterostachys ritteriana clusters, containing relevés from scrub. Our interpretation of DCCA ordinations suggests that vegetation pattern is primarily related to a salinity-moisture gradient. There is a strong relationship between vegetation type and the amount of salt in the groundwater and the pattern of its variation during the year. The depth of the groundwater and the conditions of submersion are also related to the compositional variation of the vegetation. Although flooding causes some differences between sites, the most important discriminant variable, and therefore the best predictor of floristic variation, is salinization.

Keywords

Cluster analysis Groundwater Ordination Salinity Vegetation-environment relationships 

References

  1. Adam P. (1990):Saltmarsh ecology. Cambridge University Press Cambridge.Google Scholar
  2. Antrop M. (1983):Inventoring and monitoring of landscape as a natural and cultural resource. Proceedings of a EARSEL/ESA symposium on remote sensing application for environment studies (ESA SP-188), Brussels, Belgium.Google Scholar
  3. Burkart S.E., Leon R.J.C. &Movia C. (1990): Phytosociological inventory of an area of the Depression del Salado (Buenos Aires, Argentina) spanning the main environmental gradients.Darwiniana 30: 27–69.Google Scholar
  4. Caballero J.M., Esteve M.A., Calvo J.F. &Pujol J.A. (1994): Structure of the vegetation of salt steppes of Guadalentin (Murcia, Spain).Stud. Oecol. 10–11: 171–183.Google Scholar
  5. Callaway R.M. &Sabraw C.S. (1994): Effects of variable precipitation on the structure and diversity of a California saltmarsh community.J. Veg. Sci. 5: 433–438.CrossRefGoogle Scholar
  6. Cantero J.J. &Bianco C.A. (1986): Vascular plants in the southwest of the province of Córdoba (Argentina): Preliminar catalogue of the species.Revista Univ. Nac. Rio Cuarto 6: 5–52.Google Scholar
  7. Cantero J.J., Cantero A. &Cisneros J.M. (1996):The vegetation of hydrohalomorphic landscapes in central Argentina. Ed. Universidad Nacional de Rio Cuarto, Argentina.Google Scholar
  8. Cantero J.J., Cantero A. & Cisneros J.M. (1998): Habitat structure and vegetation relationships in central Argentina saltmarsh landscapes.Pl. Ecol. (in press).Google Scholar
  9. Cantero J.J. &Leon R.J.C. (1996): Comparison of vegetation classifications from Argentine saltmarsh landscapes.Abstr. Bot. 20: 69–83.Google Scholar
  10. Cantu P.M. & Degiovanni S.E. (1984): Geomorphology of the central region of Córdoba province (Argentina). In: IX Geological Argentine Congress, Geological Argentine Society, San Carlos de Bariloche, Sect. IV: 66–92.Google Scholar
  11. Chaneton E.J., Facelli J.M. &Leon R.J.C. (1988): Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina.J. Range Managem. 41: 497–501.Google Scholar
  12. Flowers T.J. (1975): Halophytes In:Baker D.A. &Hall J.L. (eds.),Ion transport in cells and tissues, North Holland, Amsterdam, pp. 309–334.Google Scholar
  13. Garcia L.V., Maranon T., Moreno A. &Clemente L. (1993): Above-ground biomass and species richness in a Mediterranean saltmarsh.J. Veg. Sci. 4: 417–424.CrossRefGoogle Scholar
  14. Kruegger H.R. &Peinemann N. (1996): Coastal plain halophytes and their relation to soil ionic composition.Vegetatio 122: 143–150.CrossRefGoogle Scholar
  15. Lewis J.P., Pire E.F., Carnevale E.J., Boccanelli S., Stofella S. &Prado D.E. (1985): Floristic groups and plant communities of southeastern Santa Fe, Argentina.Vegetatio 60: 67–90.CrossRefGoogle Scholar
  16. Maryam H., Ismail S., Ala F. &Ahmad R. (1995): Studies on growth and salt regulation in some halophytes as influenced by edaphic and climatic conditions.Pakistan J. Bot. 27: 151–163.Google Scholar
  17. O'Leary J.W. &Glenn E.P. (1994): Global distribution and potential for halophytes. In:Squires V.R. &Ayoub A.T. (eds.),Halophytes as a resource for livestock and for rehabilitation of degraded lands, Task for vegetation science 34. Kluwer, Dordrecht, pp. 7–15.Google Scholar
  18. Orloci L. (1978):Multivariate analysis in vegetation research. Ed. 2, Dr. W. Junk, The Hague.Google Scholar
  19. Orloci L. &Kenkel N.C. (1987).Data analysis in population and community ecology. Univ. of Hawaii, Honolulu and New Mexico State University, Las Cruces.Google Scholar
  20. Orloci L. &Stanek W. (1979): Vegetation survey on the Alaska Highway. Yukon territory: types and gradients.Vegetatio 41: 1–56.CrossRefGoogle Scholar
  21. Perelman S., Leon R.J.C. &Deregibus V.A. (1982): The application of an objective method to the study of native grassland communities in the Salado River Basin (Argentina).Revista Fac. Agron. (Buenos Aires) 3: 27–40.Google Scholar
  22. Pizarro F. (1978): Drenaje agricola y recuperacion de suelos salinos. Editorial Agricola Española, Madrid.Google Scholar
  23. Ragonese A. &Covas G. (1947): The halophilous flora of southern Santa Fe province (Argentina).Darwiniana 7: 401–496.Google Scholar
  24. Richards E. (1973): Diagnostico y rehabilitacion de Suelos Salinos y Sodicos. Ed. Limusa, México.Google Scholar
  25. Šmilauer P. (1992).Cano Draw ver. 3.0. Lite. Microcomputer Power, USA.Google Scholar
  26. Soil Survey Staff. (1975).Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. U. S. Department of Agriculture, Soil Conservation Service, Agricultural Handbook 436, Washington D. C.Google Scholar
  27. Sykora K.V., Van Katwijk M. &Meier R. (1987): Synecological relation in the moist grasslands of Ballyteige Innish Ireland. In:Huiskes A.L.H., Blom C.W.P.M. &Rozema J. (eds.),Vegetation between land and sea, Dr. W. Junk, Dordrecht.Google Scholar
  28. Ter Braak C.J.F. (1987a):Unimodal models to relate species to environment. Agricultural Mathematics Group, Wageningen.Google Scholar
  29. ter Braak C.J.F. (1987b): The analysis of vegetation-environment relationships by canonical correspondence analysis.Vegetatio 69: 69–77.CrossRefGoogle Scholar
  30. Ter Braak C.J.F. (1987c):CANOCO-a FORTRAN program for canonical community ordination by partial detrended canonical correspondence analysis, principal component analysis and redundancy analysis (version 2.1.). Agriculture Mathematics Group, Wageningen.Google Scholar
  31. Ter Braak C.J.F. (1988): Partial canonical correspondence analysis. In:Bock H.H. (ed.),Classification methods and related methods of data analysis, North Holland, Amsterdam.Google Scholar
  32. Ter Braak C.J.F. &Prentice L.C. (1988): A theory of gradient analysis.Advances Ecol. Res. 18: 271–317.CrossRefGoogle Scholar
  33. Ungar I. (1965): An ecological study of the vegetation of the big saltmarsh, Stanfford country, Kansas.Univ. Kansas Sci. Bull. 46: 1–99.Google Scholar
  34. Ungar I.A. (1968): Species-soil relationships on the Great Salt Plains of northern Oklahoma.Amer. Midl. Naturalist 80: 392–406.CrossRefGoogle Scholar
  35. Ungar I.A. (1970): Species-soil relationships on sulfate dominated soils in South Dakota.Amer. Midl. Naturalist 3: 343–357.CrossRefGoogle Scholar
  36. Ungar I.A. (1972): The vegetation of inland saline marshes of North America, north of Mexico. In:van der Maarel E. &Tüxen R. (eds.),Grundfragen und methoden in der pflanzensoziologie, Dr. W. Junk, Den Haag.Google Scholar
  37. Ungar I.A. (1974a):Ecology of halophytes. Academic Press, New York.Google Scholar
  38. Ungar I.A. (1974b): Halophyte communities of Park country, Colorado.Bull. Torrey Bot. Club 101: 145–152.CrossRefGoogle Scholar
  39. Waisel Y. (1972):Biology of halophytes. Academic Press, New York.Google Scholar
  40. Wildi O. (1989): A new numerical solution to traditional phytosociological tabular classification.Vegetatio 81: 95–106.CrossRefGoogle Scholar
  41. Wildi O. &Orloci L. (1983).Management and multivariate analysis of vegetation data. Ed. 2. Eidg. Anst. Forstl. Versuchswes., Berlin.Google Scholar
  42. Wildi O. &Orloci L. (1990):Numerical exploration of community patterns. SPB Academic Publ., The Hague.Google Scholar
  43. Wildi O. (1994).Data analysis with MULVA-5, WSL, Birmensdorf.Google Scholar

Copyright information

© Institute of Botany 1998

Authors and Affiliations

  • Juan José Cantero
    • 1
  • José Manuel Cisneros
    • 1
  • Martin Zobel
    • 2
  • Alberto Cantero
    • 1
  1. 1.Facultad de Agronomía y VeterinariaUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Department of Botany and EcologyTartu UniversityTartuEstonia

Personalised recommendations