Skip to main content
Log in

Coronary revascularization in the 21ST century

Emphasis on contributions by Japanese surgeons

  • Published:
The Japanese Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

The first three decades of coronary artery surgery have provided the foundation for the next century of this evolution. It is apparent that a multitude of events including the development of cardioplegia, improving surgical instrumentation, technological advances including endoscopic approaches and computer assisted robotics and biologic discoveries such as the role of the endothelium have provided the underpinnings for improved surgical outcomes. However, the single most important determinant of late results is the type of bypass conduit used for grafting. Thus, use of the left internal thoracic artery (ITA) grafted to the left anterior descending coronary is a more important determinant of survival than is any other factor (progression of coronary artery disease, increased age, poor left ventricular function, diabetes, female gender and offpump operations).1,2 Use of two ITAs provides further benefit3–8 and it is likely that three or more arterial conduits will be shown to be advantageous in this regard in due time. Japanese cardiothoracic surgeons have made significant contributions to the continuing evolution of coronary bypass surgery and particularly to the advance of arterial conduits. This report will address those contributions to this evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal mammary artery graft 10 year survival and other cardiac events. N Engl J Med 1986; 314: 1–6.

    CAS  PubMed  Google Scholar 

  2. Cameron A, Davis KB, Green G, Schaff HV. Coronary bypass surgery with internal thoracic-artery grafts: Effects on survival over a 15 year period. N Engl J Med 1996; 334: 216–9.

    CAS  PubMed  Google Scholar 

  3. Buxton BF, Komeda M, Fuller JA, Gordon I. Bilateral internal thoracic artery grafting may improve outcome of coronary artery surgery: Risk adjusted survival. Circulation 1998; 98: II-I–II-VI.

    Google Scholar 

  4. Fiore AC, Naunheim KS, Dean P, et al. Results of internal thoracic artery grafting over 15 years: Single versus double grafts. Ann Thorac Surg 1990; 49: 202–9.

    CAS  PubMed  Google Scholar 

  5. Jones JW, Schmidt SE, Miller CC, et al. Bilateral internal thoracic artery operations in the elderly. J Cardiovasc Surg 2000; 41: 165–70.

    CAS  Google Scholar 

  6. Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 1999; 117: 855–72.

    CAS  PubMed  Google Scholar 

  7. Pick AW, Orszulak TA, Anderson BJ, Schaff HV. Single versus double bilateral internal mammary artery grafts: Ten-year outcome analysis. Ann Thorac Surg 1997; 64: 599–605.

    CAS  PubMed  Google Scholar 

  8. Ura M, Sakata R, Nakayama Y, et al. Long-term results of bilateral internal thoracic artery grafting. Ann Thorac Surg 2000; 70: 1991–6.

    CAS  PubMed  Google Scholar 

  9. Furchgott RF, Zawadski JV. The obligatory role of the endothelial cells and the relaxation of artery smooth muscle cells by acetylcholine. Nature 1981; 288: 373–6.

    Google Scholar 

  10. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6.

    CAS  PubMed  Google Scholar 

  11. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1996; 28: 616–26.

    Google Scholar 

  12. Joannides R, Richard V, Haefeli WE, et al. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension 1995; 26: 327–31.

    CAS  PubMed  Google Scholar 

  13. Shiode N, Morishima N, Nakayama K, et al. Flow-mediated vasodilation of human epicardial coronary arteries: Effective inhibition of nitric oxide synthesis. J Am Coll Cardiol 1996; 27: 304–10.

    CAS  PubMed  Google Scholar 

  14. Tronc F, Wassef M, Esposito B, et al. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 1996; 16: 1256–62.

    CAS  PubMed  Google Scholar 

  15. Barner HB. Remodeling of arterial conduits in coronary grafting. Ann Thorac Surg 2002; 73: 1341–5.

    PubMed  Google Scholar 

  16. Luscher TF, Diederich D, Siebenmann R, et al. Difference between endothelium-dependent relaxation in arterial and venous coronary bypass grafts. N Engl J Med 1988; 319: 462–7.

    CAS  PubMed  Google Scholar 

  17. Broeders MAW, Doevondans PA, Maessen JA, et al. The human internal thoracic artery releases more nitric oxide in response to vascular endothelial growth factor than the human saphenous vein. J Thorac Cardiovas Surg 2001; 122: 305–9.

    CAS  Google Scholar 

  18. Ishii T, Okadone K, Kohori K, et al. Natural course of endothelium-dependent and interdependent responses in autologous femoral veins grafted into the arterial circulation of the dog. Circ Res 1993; 72: 1004–10.

    CAS  PubMed  Google Scholar 

  19. Chello M, Mastroroberto P, Perticone F, et al. Nitric oxide modulation of neutrophil-endothelium interaction: Difference between arterial and venous bypass grafts. J Am Col Cardiol 1998; 31: 823–6.

    CAS  Google Scholar 

  20. Nishioka H, Kitamura S, Kameda Y, et al. Difference in acetylcholine-induced nitric oxide release of arterial and venous grafts in patients after coronary bypass operations. J Thorac Cardiovasc Surg 1998; 116: 454–9.

    CAS  PubMed  Google Scholar 

  21. Kushavaha SS, Bustami M, Tadjkarimi S, et al. Late endothelial function of free and pedicled internal mammary artery grafts. J Thorac Cardiovasc Surg 1995; 110: 453–62.

    Google Scholar 

  22. Barner HB. Double internal mammary-coronary artery bypass. Arch Surg 1974; 109: 627–30.

    CAS  PubMed  Google Scholar 

  23. Invert Z, Huttenen K, Laudou C, Bjork VO. Angiographic studies of internal mammary artery grafts 11 years after coronary artery bypass grafting. J Thorac Cardiovasc Surg 1998; 96: 1–12.

    Google Scholar 

  24. Dincer B, Barner HB. The “occluded” internal mammary artery graft. Restoration of patency after apparent occlusion associated with progression of coronary disease. J Thorac Cardiovasc Surg 1983; 85: 318–20.

    CAS  PubMed  Google Scholar 

  25. Aris A, Borras X, Ramio J. Patency of internal mammary artery grafts in no flow situations. J Thorac Cardiovasc Surg 1987; 93: 62–4.

    CAS  PubMed  Google Scholar 

  26. Seki T, Kitamura S, Kawachi K, et al. A quantitative study of postoperative luminal narrowing of the internal thoracic artery graft in coronary artery bypass surgery. J Thorac Cardiovasc Surg 1992; 104: 1532–8.

    CAS  PubMed  Google Scholar 

  27. Akasaka T, Yoshida K, Hozumi T, et al. Flow dynamics of angiographically no-flow patent internal mammary artery grafts. J Am Coll Cardiol 1998; 31: 1049–56.

    CAS  PubMed  Google Scholar 

  28. Hashimoto H, Isshiki T, Ikari Y, et al. Effects of competitive blood flow on arterial graft patency and diameter: Medium-term postoperative flow-up. J Thorac Cardiovasc Surg 1996; 111: 399–407.

    CAS  PubMed  Google Scholar 

  29. Kawasuji M, Sakakibara N, Takemura H, et al. Is internal thoracic artery grafting suitable for a moderately stenotic coronary artery? J Thorac Cardiovasc Surg 1996; 112: 253–9.

    CAS  PubMed  Google Scholar 

  30. Masuda T, Matsuda Y, Tanimoto Y, et al. Angiographic follow-up of internal thoracic artery for free bypass grafting. Ann Thorac Surg 1998; 65: 731–4.

    CAS  PubMed  Google Scholar 

  31. Nakayama Y, Sakata R, Ura M. Growth potential of left internal thoracic artery grafts: analysis of angiographic findings. Ann Thorac Surg 2001; 91L: 142–7.

    Google Scholar 

  32. Nasu M, Akasaka T, Okazaki T, et al. Postoperative flow characteristics of left internal thoracic artery grafts. Ann Thorac Surg 1995; 59: 154–62.

    CAS  PubMed  Google Scholar 

  33. Shimizu T, Hirayama T, Suesada H, et al. Effect of flow competition on internal thoracic artery graft: post-operative velocimetric and angiographic study. J Thorac Cardiovasc Surg 2000; 120: 459–65.

    CAS  PubMed  Google Scholar 

  34. Takemura H, Kawasuji, Sakakibara N, et al. Internal thoracic artery graft function during exercise assessed by transthoracic Doppler echocardiography. Ann Thorac Surg 1996; 61: 914–9.

    CAS  PubMed  Google Scholar 

  35. Uchida N, Kawaue Y. Flow competition of the right gastroepiploic artery graft in coronary revascularization Ann Thorac Surg 1996; 62: 1342–6.

    CAS  PubMed  Google Scholar 

  36. Kitamura S, Kawachi K, Seki T, et al. Angiographic demonstration of no-flow anatomical patency of internal thoracic-coronary artery bypass grafts. Ann Thorac Surg 1992; 53: 156–9.

    CAS  PubMed  Google Scholar 

  37. Tyras DH, Barner HB. Coronary-subclavian steal. Arch Surg 1997; 112: 1125–7.

    Google Scholar 

  38. Flemma RJ, Singh HM, Tector AJ, et al. Competitive hemodynamic properties of vein and mammary artery in coronary bypass operations. Ann Thorac Surg 1975; 20: 619–23.

    CAS  PubMed  Google Scholar 

  39. Hamby RI, Aintablian A, Wisoff BG. Comparative study of the postoperative flow in the saphenous vein and internal mammary artery bypass grafts. Am Heart J 1977; 93: 306–11.

    CAS  PubMed  Google Scholar 

  40. Barner HB. Blood flow in the internal mammary artery. Am Heart J 1973; 86: 570–1.

    CAS  PubMed  Google Scholar 

  41. Schmidt DH, Blau F, Hellman C. Isoproterenol—induced flow responses in mammary and vein bypass grafts. J Thorac Cardiovasc Surg 1980; 80: 319–26.

    CAS  PubMed  Google Scholar 

  42. Myojin K, Weiss G, Mee R, et al. Functional comparison of coronary artery bypass grafts of the saphenous vein and internal mammary artery. J Thorac Cardiovasc Surg 1980; 79: 713–8.

    CAS  PubMed  Google Scholar 

  43. Hodgson J, Singh AK, Drew TM, et al. Evaluation of postoperative flow reserve in internal mammary artery bypass grafts. J Am Coll Cardiol 1986; 7: 32–7.

    CAS  PubMed  Google Scholar 

  44. Johnson AM, Kron IL, Watson DD. Evaluation of postoperative flow reserve in internal mammary artery grafts. J Thorac Cardiovasc Surg 1986; 92: 822–7.

    CAS  PubMed  Google Scholar 

  45. Kawasuji M, Tsujiguchi, Tedoriya T, et al. Evaluation of postoperative flow capacity of internal mammary artery. J Thorac Cardiovasc Surg 1990; 99: 696–702.

    CAS  PubMed  Google Scholar 

  46. Kawasuji M, Tedoriya T, Takemura H, et al. Flow capacities of arterial grafts for coronary artery bypass grafting. Ann Thorac Surg 1993; 56: 957–62.

    CAS  PubMed  Google Scholar 

  47. Akasaka T, Yoshikawa J, Yoshida K, et al. Flow capacity of internal mammary artery grafts: early restriction and later improvement assessed by Doppler guide wirs. J Am Coll Cardiol 1995; 25: 640–7.

    CAS  PubMed  Google Scholar 

  48. Wendler O, Hennen B, Markwirth T, et al. 7-grafts with the right internal thoracic artery to left internal thoracic artery versus the left internal thoracic artery and radial artery: flow dynamics in the internal thoracic artery mainstem. J Thorac Cardiovasc Surg 1999; 118: 841–8.

    CAS  PubMed  Google Scholar 

  49. Markwirth T, Hennen B, Scheller B, et al. Flow wire measurements after complete arterial revascularization with 7-grafts. Ann Thorac Surg 2001; 71: 788–93.

    CAS  PubMed  Google Scholar 

  50. Ochi M, Hatori N, Bessho R, et al. Adequacy of flow capacity of bilateral internal thoracic artery T-graft. Ann Thorac Surg 2001; 72: 2008–12.

    CAS  PubMed  Google Scholar 

  51. Morita R, Kitamura S, Kawachi K, et al. Exercise coronary flow researve of bilateral internal thoracic artery bypass grafts. Ann Thorac Surg 1993; 55: 883–7.

    CAS  PubMed  Google Scholar 

  52. Ochi M, Hatori N, Fujii M, et al. Limited flow capacity of the right gastroepiploic artery graft: postoperative echocardiographic and angiographic evaluation. Ann Thorac Surg 2001; 71: 1210–4.

    CAS  PubMed  Google Scholar 

  53. Hata M, Shiono M, Orime Y, et al. Clinical results of coronary artery bypass grafting with use of the internal thoracic artery under low free flow conditions. J Thorac Cardiovasc Surg 2000; 119: 125–9.

    CAS  PubMed  Google Scholar 

  54. Carrel T, Kujawski T, Zünd G, et al. The internal mammary artery malperfusion syndrome: incidence, treatment and angiographic verification. Eur J Cardiothorac Surg 1995; 9: 190–7.

    CAS  PubMed  Google Scholar 

  55. Gaudino M, Trani C, Luciani N, et al. The internal mammary artery malperfusion syndrome: late angiographic verification. Ann Thorac Surg 1997; 63: 1257–61.

    CAS  PubMed  Google Scholar 

  56. Kitamura S, Seki T, Kawachi K, et al. Excellent patency and growth potential of internal mammary artery grafts in pediatric coronary artery bypass surgery: new evidence for a “live” conduit. Circulation 1988; 78 (Suppl I):.

    Google Scholar 

  57. Barner HB, Barnett M. Fifteen to twenty-one year angiographic assessment of internal thoracic artery as a bypass conduit. Ann Thorac Surg 1994; 57: 1526–8.

    CAS  PubMed  Google Scholar 

  58. Fitzgibbon GM, Kafka HB, Leach AJ, et al. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 1996; 28: 616–26.

    CAS  PubMed  Google Scholar 

  59. Solymoss BC, Nadeau P, Millette D, Campeau L. Late thrombosis of saphenous vein coronary bypass grafts related to risk factors. Circulation 1988; 78 (Suppl I):.

    Google Scholar 

  60. Blankenhorn DN, Nessim A, Johnson RL et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. J Am Med Assoc 1987; 257: 3233–40.

    CAS  Google Scholar 

  61. The Post Coronary Artery Bypass Trial Investigators. The effects of aggressive lowering of low-density lipoprotein cholesterol levels in low-dose anticoagulation on obstructive changes in saphenous-vein coronary artery bypass grafts. N Engl J Med 1997; 336: 153–62.

    Google Scholar 

  62. Edwards FH, Clark RE, Schwartz M. Impact of internal mammary artery conduits on operative mortality in coronary revascularization. Ann Thorac Surg 1994; 57: 27–32.

    CAS  PubMed  Google Scholar 

  63. Grover FL, Johnson RR, Marshall G, Hammermeister KE. Impact of mammary grafts on coronary bypass operative mortality and morbidity. Department of Veterans Affairs Cardiac Surgeons. Ann Thorac Surg 1994; 57: 559–68.

    CAS  PubMed  Google Scholar 

  64. Moon MR, Sundt TM, Pasque MK, et al. Influence of internal mammary artery grafting and completeness of revascularization on long-term outcome in octogenarians. Ann Thorac Surg 2001; 72: 2003–7.

    CAS  PubMed  Google Scholar 

  65. McBride LR, Barner HB. The left internal mammary artery as a sequential graft to the left anterior descending system. J Thorac Cardiovasc Surg 1983; 86: 703–5.

    CAS  PubMed  Google Scholar 

  66. Barner HB, Sundt TM III, Bailey M, Zang Y. Midterm results of complete arterial revascularization in more than 1,000 patients using an internal thoracic artery/ radial artery T graft. Ann Surg 2001; 234: 447–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Dion R, Glineur D, Derouck D. Long-term clinical and angiographic follow-up of sequential internal thoracic artery grafting. Eur J Cardio-thorac Surg 2000; 17: 407–14.

    CAS  Google Scholar 

  68. Gurevitch J, Matsa M, Paz Y, et al. Effect of age on outcome of bilateral skeletonized iniernal thoracic artery grafting. Ann Thorac Surg 2001; 71: 549–54.

    CAS  PubMed  Google Scholar 

  69. Matsa M, Paz Y, Gurevitch J, et al. Bilateral skeletonized internal thoracic grafts in patients with diabetes mellitus. J Thorac Cardiovasc Surg 2001; 121: 668–74.

    CAS  PubMed  Google Scholar 

  70. Nakayama Y, Sakata R, Ura M. Bilateral internal thoracic artery use for dialysis patients: Does it increase operative risks? Ann Thorac Surg 2001; 71: 783–7.

    CAS  PubMed  Google Scholar 

  71. Ura M, Sakata R, Nakayama Y, et al. The impact of chronic renal failure on atherosclerosis of the internal thoracic arteries. Ann Thorac Surg 2001; 71: 148–51.

    CAS  PubMed  Google Scholar 

  72. Hosoda Y, Yamamoto T, Takazawa K, et al. Coronary artery bypass grafting in patients on chronic hemodialysis: surgical outcome in diabetic nephropathy versus non-diabetic nephropathy patients. Ann Thorac Surg 2001; 71: 543–8.

    CAS  PubMed  Google Scholar 

  73. Puig LB, Neto LF, Rati M, et al. A technique of anastomosis of the right internal mammary artery to the circumflex artery and its branches. Ann Thorac Surg 1984; 38: 533–4.

    CAS  PubMed  Google Scholar 

  74. Ueyama K, Sakata R, Umebayashi, Y, et al. In situ right internal thoracic artery graft via transverse sinus for revascularization of posterolateral wall early results in 116 cases. J Thorac Cardiovasc Surg 1996; 112: 731–6.

    CAS  PubMed  Google Scholar 

  75. Ura M, Sakata R, Nakayama Y, et al. Technical aspects and outcome of in situ right internal thoracic artery grafting to the major branches of the circumflex artery via the transverse sinus. Ann Thorac Surg 2001; 71: 1485–90.

    CAS  PubMed  Google Scholar 

  76. Barner HB. The internal mammary artery as a free graft. J Thorac Cardiovasc Surg 1973; 66: 219–21.

    CAS  PubMed  Google Scholar 

  77. Loop FD, Spampinato N, Cheanvechai C, Effer DB. The free internal mammary bypass graft: in use of the IMA in the aorta-to-coronary artery position. Ann Thorac Surg 1973; 15: 50–5.

    CAS  PubMed  Google Scholar 

  78. Sauvage LR, Wu HD, Kowalsky TE, et al. Healing basis and surgical techniques for complete revascularization of the left ventricle using only the internal mammary arteries. Ann Thorac Surg 1986; 42: 449–65.

    CAS  PubMed  Google Scholar 

  79. Tector AJ, Amundsen S, Schmahl TM, et al. Total revascularization with T-graft. Ann Thorac Surg 1994; 57: 33–9.

    CAS  PubMed  Google Scholar 

  80. Calafiore AM, Di Giammarco G, Luciani N, et al. Composite arterial conduits for a wider arterial myocardial revascularization. Ann Thorac Surg 1994; 58: 185–90.

    CAS  PubMed  Google Scholar 

  81. Galbut DL, Traad EA, Dorman MW, et al. Seventeen year experience with bilateral mammary artery bypass grafts. Ann Thorac Surg 1990; 49: 195–201.

    CAS  PubMed  Google Scholar 

  82. Cunningham JM, Gharavi MA, Fardin R, Meek RA. Considerations in the skeletonization technique of internal thoracic artery dissection. Ann Thorac Surg 1992; 54: 947–50.

    CAS  PubMed  Google Scholar 

  83. Loop FD, Lytle BW, Cosgrove DM, et al. Sternal wound complications after isolated coronary artery bypass grafting early and late mortality, morbidity and cost of care. Ann Thorac Surg 1990; 49: 179–87.

    CAS  PubMed  Google Scholar 

  84. Kouchoukos NT, Wareing TH, Murphy SF, et al. Risks of bilateral internal mammary artery bypass grafting. Ann Thorac Surg 1990; 49: 210–9.

    CAS  PubMed  Google Scholar 

  85. Grossi EA, Esposito R, Harris LJ, et al. Sternal wound infections in use of internal mammary artery grafts. J Thorac Cardiovasc Surg 1991; 102: 342–6.

    CAS  PubMed  Google Scholar 

  86. De Jesus RA, Aclind RD. Anatomic study of the collateral blood supply of the sternum. Ann Thorac Surg 1995; 59: 163–8.

    PubMed  Google Scholar 

  87. Henriquez-Pino JA, Gomes WJ, Prates JC, Buffolo E. Surgical anatomy of the internal thoracic artery. Ann Thorac Surg 1997; 64: 1040–5.

    Google Scholar 

  88. Cohen AJ, Lockman J, Lorberboym M, et al. Assessment of sternal vascularity with single photon emission computed tomography after harvesting of the internal thoracic artery. J Thorac Cardiovasc Surg 1999; 118: 496–501.

    CAS  PubMed  Google Scholar 

  89. Calafiore AM, Vitolla G, Iaco AL, et al. Bilateral internal mammary artery grafting mid-term results of pedicled versus skeletonized conduit. Ann Thorac Surg 1999; 67: 1637–42

    CAS  PubMed  Google Scholar 

  90. Lytle BW: Skeletonized internal thoracic artery grafts and wound complications. J Thorac Cardiovasc Surg 2001; 121: 625–7.

    CAS  PubMed  Google Scholar 

  91. Matsumoto M, Konishi Y, Miwa S, Minakata K Effect of different methods of internal thoracic artery harvest on pulmonary function. Ann Thorac Surg 1997; 63: 653–5.

    CAS  PubMed  Google Scholar 

  92. Higani T, Maruo A, Yamashita T, et al. Histologic and physiologic evaluation of skeletonized internal thoracic artery harvesting with an ultrasonic scalpel. J Thorac Cardiovasc Surg 2000; 120: 1142–7.

    Google Scholar 

  93. Sasajima T, Wu MH, Shi Q, et al. Effect of skeletonizing dissection on the internal thoracic artery. Ann Thorac Surg 1998; 65: 1009–13.

    CAS  PubMed  Google Scholar 

  94. Yoshida H, Wu MH, Kouchi Y, et al. Comparison of the effect of monopolar and bipolar cauterization on skeletonized, dissected internal thoracic arteries. J Thorac Cardiovasc Surg 1995; 110: 504–10.

    CAS  PubMed  Google Scholar 

  95. Buxton BF, Ruengsakulrach P, Fuller J, et al. The right internal thoracic artery graft benefits of grafting the left coronary system and native vessels with a high grade stenosis. Eur J Cardio-thorac Surg 2000; 18: 255–61.

    CAS  Google Scholar 

  96. Ura M, Sakata R, Nakayama, et al. Long-term patency rate of right internal thoracic artery bypass via the transverse sinus. Circulation 1998; 98: 2043–8.

    CAS  PubMed  Google Scholar 

  97. Higami T, Yamashita T, Nohara H, et al. Early results of coronary grafting using ultrasonically skeletonized internal thoracic arteries. Ann Thorac Surg 2001; 71: 1224–8.

    CAS  PubMed  Google Scholar 

  98. Tashiro T, Nakamura K, Sukehiro S, et al. Mid-term results of free internal thoracic artery grafting for myocardial revascularization. Ann Thorac Surg 1998; 65: 951–4.

    CAS  PubMed  Google Scholar 

  99. Calafiore AM, Contini M, Vitolla G, et al. Bilateral internal thoracic grafting long-term clinical and angiographic results of in situ versus Y-grafts. J Thorac Cardiovasc Surg 2000; 120: 990–8.

    CAS  PubMed  Google Scholar 

  100. Pym J, Brown P, Pearson N, et al. Right gastroepiploic-to-coronary artery bypass. The first decade of use. Circulation 1995; 92 (Suppl II):.

    Google Scholar 

  101. Suma H, Wanibuchi Y, Terada Y. The right gastroepiploic artery: clinical and angiographic mid-term results in 200 patients. J Thorac Cardiovasc Surg 1993; 105: 615–23.

    CAS  PubMed  Google Scholar 

  102. Albertini A, Lochegnies A, El Khoury G, et al. Use of the right gastroepiploic artery as a coronary artery bypass graft in 307 patients. Cardiovasc Surg 1998; 6: 419–23.

    CAS  PubMed  Google Scholar 

  103. Bergsma TM, Grandjean JG, Voors AV, et al. Low recurrence of angina pectoris after coronary artery bypass surgery with bilateral internal thoracic and right gastroepiploic arteries. Circulation 1998; 97: 2402–5.

    CAS  PubMed  Google Scholar 

  104. Grandjean JG, Boonstra PW, Heyer P, Ebels T. Arterial revascularization with the right gastroepiploic artery and internal mammary arteries in 300 patients. J Thorac Cardiovasc Surg 1994; 107: 1309–16.

    CAS  PubMed  Google Scholar 

  105. Isomura T, Sato T, Hisatomi H, et al Intermediate clinical results of combined gastroepiploic and internal thoracic artery bypass. Ann Thorac Surg 1996; 62: 1743–7.

    CAS  PubMed  Google Scholar 

  106. Nishida H, Endo M, Koyanagi H, et al. Coronary artery bypass grafting with the right gastroepiploic artery and evaluation of flow with transcutaneous Doppler echocardiography. J Thorac Cardiovasc Surg 1994; 108: 532–9.

    CAS  PubMed  Google Scholar 

  107. Jegaden O, Eker A, Montagna P, et al. Technical aspects and late functional results of gastroepiploic bypass grafting (400 cases). Eur J Cardio-thorac Surg 1995; 9: 575–81.

    CAS  Google Scholar 

  108. Ochi N, Bessho R, Saji Y, et al. Sequential grafting of the right gastroepiploic artery in coronary artery bypass surgery. Ann Thorac Surg 2001; 71: 1205–9.

    CAS  PubMed  Google Scholar 

  109. Suma H, Wanibuchi Y, Furuta S, et al. Comparative study between the gastroepiploic and the internal thoracic artery as a coronary bypass graft. Eur J Cardiothorac Surg 1991; 5: 244–7.

    CAS  PubMed  Google Scholar 

  110. Louagie YAG, Jamart J, Buche M, et al. Intra-operative hemodynamic assessment of gastroepiploic artery and saphenous vein bypass grafts: a comparative study. J Thorac Cardiovasc Surg 1999; 118: 330–8.

    CAS  PubMed  Google Scholar 

  111. Jegaden O, Bontemps L, de Gevigney G, et al. Two-year assessment by exercise thallium scintigraphy of myocardial revascularization using bilateral internal mammary and gastroepiploic arteries. Eur J Cardiothorac Surg 1999; 16: 131–4.

    CAS  PubMed  Google Scholar 

  112. Nakao T, Kawaue Y. Effect of coronary revascularization with the right gastroepiploic artery: comparative examination of angiographic findings in the early postoperative period. J Thorac Cardiovasc Surg 1993; 106: 149–53.

    CAS  PubMed  Google Scholar 

  113. Uchida N, Kawaue Y. Flow competition of the right gastroepiploic artery graft in coronary revascularization. Ann thorac Surg 1996; 62: 1342–6.

    CAS  PubMed  Google Scholar 

  114. Tavilla G, van Son JAM, Verhagen AF, Smedts F. Retrogastric versus anti-gastric routing and histology of the right gastroepiploic artery. Ann Thorac Surg 1992; 53: 1050–61.

    Google Scholar 

  115. Beretta L, Lemma M, Vanelli P, et al. Gastroepiploic artery free graft for coronary bypass. Eur J Cardiothorac Surg 1990; 4: 323–8.

    CAS  PubMed  Google Scholar 

  116. Matsuura A, Yasuura K, Yoshida K, et al. Transplantation of the en bloc vascular system for coronary revascularization. J Thorac Cardiovasc Surg 2001; 121: 520–5.

    CAS  PubMed  Google Scholar 

  117. Tanimoto Y, Matsuda Y, Masuda T, et al. Multiple free (aorto-coronary) gastroepiploic artery grafting. Ann Thorac Surg 1990; 49: 479–80.

    CAS  PubMed  Google Scholar 

  118. Suma H, Isomura T, Horii T, Sato T. Late angiographic result of using the right gastroepiploic artery as a graft. J Thorac Cardiovasc Surg 2000; 120: 496–8.

    CAS  PubMed  Google Scholar 

  119. Voutilainen S, Verkkala K, Järvinen A, Keto P. Angiographic five-year follow-up study of right gastroepiploic artery grafts. Ann Thorac Surg 1996; 62: 501–5.

    CAS  PubMed  Google Scholar 

  120. Tatoulis J, Buxton BF, Fuller JA, Royse AG. Total arterial revascularization Techniques and results in 3,220 patients. Ann Thorac Surg 1999; 68: 2093–9.

    CAS  PubMed  Google Scholar 

  121. Acar C, Ramsheyi A, Pagny JY, et al. The radial artery for coronary artery bypass grafting clinical and angiographic results at five years. J Thorac Cardiovasc Surg 1998; 116: 981–9.

    CAS  PubMed  Google Scholar 

  122. Isomura T, Suma H, Sato H, Horii T. Use of the Harmonic Scalpel for harvesting arterial conduits in coronary artery bypass. Eur J Cardio-thorac Surg 1998; 14: 101–3.

    CAS  Google Scholar 

  123. Ronan JW, Perry LA, Barner HB, Sundt, TM. Radial artery harvest comparison of ultrasonic dissection with standard technique. Ann Thorac surg 2000 69: 113–4.

    CAS  PubMed  Google Scholar 

  124. Shanahan CM, Cary NRB, Salisbury JR, et al. Medial localization of mineralization-regulating proteins in association with Mönckeberg's sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 1999; 100: 2168–76.

    CAS  PubMed  Google Scholar 

  125. Amano A, Hirose H, Takahashi A, Nagano N. Coronary artery bypass grafting using the radial artery mid term results in a Japanese institute. Ann Thorac Surg 2001; 72: 120–5.

    CAS  PubMed  Google Scholar 

  126. Brodman RF, Frame R, Camacho M, et al. Routine use of unilateral and bilateral radial arteries for coronary artery bypass graft surgery. J Am Col Cardiol 1996; 28: 959–63.

    CAS  Google Scholar 

  127. Cohen G, Tamariz MG, Sever JY, et al. The radial artery versus the saphenous vein graft in contemporary CABG: a case-matched study. Ann Thorac Surg 2001; 71: 180–6.

    CAS  PubMed  Google Scholar 

  128. Iaco AL, Teodori G, Di Giammarco A, et al. Radial artery for myocardial revascularization long-term clinical and angiographic results. Ann Thorac Surg 2001; 72: 464–9.

    CAS  PubMed  Google Scholar 

  129. Weinschelbaum EE, Macchia A, Caramutti VM, et al. Myocardial revascularization with radial and mammary arteries: initial and mid-term results. An Thorac Surg 2000; 70: 1378–83.

    CAS  Google Scholar 

  130. Calafiore AM, Di Mauro M, D'Alessandro S, Teodori G, Vitolla G, Contini M, et al. Revascularization of the lateral wall: long-term angiographic and clinical results of radial artery versus right internal thoracic artery grafting. J Thorac Cardiovasc Surg 2002; 123: 225–31.

    PubMed  Google Scholar 

  131. Posatti G, Gaudino M, Alessandrini F Mid-term clinical and angiographic results of radial artery grafts used for myocardial revascularization. J Thorac Cardiovasc Surg 1998; 116: 1015–21.

    Google Scholar 

  132. Maniar H, Sundt TM, Bamer HB, Prasad SM, Perterson L, Absi T, et al. Effect of target stenosis and location on radial artery graft patency. J Thorac Cardiovasc Surg 2002; 123: 45–52.

    PubMed  Google Scholar 

  133. Royse AG, Royse CF, Tatoulis J, et al. Postoperative radial artery angiography for coronary artery bypass surgery. Eur J Cardio-thorac Surg 2000; 17: 294–304.

    CAS  Google Scholar 

  134. Chardigny C, Jabara VA, Acar C, et al. Vasoreactivity of the radial artery: Comparison with the internal mammary and gastroepiploic arteries with implications for coronary artery surgery. Circulation 1993; 88 (part II): 115–27.

    Google Scholar 

  135. Cable DG, Caccitolo JA, Pearson PJ, et al. New approaches to prevention and treatment of radial artery grafts spasm. Circulation 1998; 98:.

    Google Scholar 

  136. Shapira OM, Alkon JD, Macron DSF, et al. Nitroglycerin is preferable to Diltiazem for prevention of coronary bypass conduit spasm. Ann Thorac Surg 2000; 70: 883–9.

    CAS  PubMed  Google Scholar 

  137. Chanda J, Canver CC. Reversal of pre-existing vasospasm in coronary artery conduits. Ann Thorac Surg 2001; 72: 476–80.

    CAS  PubMed  Google Scholar 

  138. He A-W, Yang C-Q. Use of verapamil and nitroglycerin solution in preparation of radial artery for coronary grafting. Ann Thorac Surg 1996; 61: 610–4.

    CAS  PubMed  Google Scholar 

  139. Taggart DP, Dipp M, Mussa S, Nye PCG Phenoxybenzamine prevents spasm in radial artery conduits for coronary artery bypass grafting. J Thorac Cardiovasc Surg 2000; 120: 815–7.

    CAS  PubMed  Google Scholar 

  140. Puig LB, Sousa AHS, Cividanes GVL, et al. Eight years experience using the inferior epigastric artery for myocardial revascularization. Eur J Cardio-thorac Surg 1997; 11: 243–7.

    CAS  Google Scholar 

  141. Barner HB, Naunheim KS, Peigh, PS, et al. Inferior epigastric artery for myocardial revascularization. Eur J Cardio-thorac Surg 1993; 7: 478–81.

    CAS  Google Scholar 

  142. Buche M, Gurné O, Paquay J-L, et al. Coronary artery bypass grafting with the inferior epigastric artery mid term clinical and angiographic results. J Thorac Cardiovasc Surg 1995; 109: 553–60.

    CAS  PubMed  Google Scholar 

  143. Calafiore AM, Di Giammarco G, Teodori G, et al. Radial artery and inferior epigastric artery and composite grafts: improved mid term angiographic results. Ann Thorac Surg 1995; 60: 517–24.

    CAS  PubMed  Google Scholar 

  144. Donatelli F, Triggiani M, Benussi S, D'Ancona G. Inferior epigastric artery as a conduit for myocardial revascularization a two-year clinical and angiographic follow-up. Cardiovasc Surg 1998; 6: 520–4.

    CAS  PubMed  Google Scholar 

  145. Kolesov VI. Manimary artery-coronary artery anastomosis as method of treatment of angina pectoris. J Thorac Cardiovasc Surg 1967; 54: 535–44.

    Google Scholar 

  146. Favaloro RG, Effer DB, Groves LK, et al. Direct myocardial revascularization by saphenous vein grafts. Present operative technique and indications. Ann Thorac Surg 1970; 10: 97–111.

    CAS  PubMed  Google Scholar 

  147. Ankeney JL. To use or not to use the pump oxygenator in coronary bypass operation. Ann Thorac Surg 1975; 19: 108–9.

    Google Scholar 

  148. Buffolo E, de Andrade JCS, Rodrigues EJN, et al. Coronary artery bypass surgery without cardiopulmonary bypass. Ann Thorac Surg 1996; 61: 63–6.

    CAS  PubMed  Google Scholar 

  149. Benetti FJ, Naselli G, Wood M, Geffiner L. direct myocardial revascularization without extracorporeal circulation: experience in 700 patients. Chest 1991; 100: 312–6.

    CAS  PubMed  Google Scholar 

  150. Calafiore AM, Di Mauro M, Contini M, et al. Myocardial revascularization with and without cardiopulmonary bypass in multivessel disease: impact of the strategy on early outcomes. Ann Thorac Surg 2001; 72: 456–63.

    CAS  PubMed  Google Scholar 

  151. Plomondon ME, Cleveland JC, Ludwig ST, et al. Off-pump coronary artery bypass is associated with improved risk-adjusted outcomes. Ann Thorac Surg 2001; 72: 114–9.

    CAS  PubMed  Google Scholar 

  152. Arom KV, Flavin TF, Emery, RW, et al. Safety and efficacy of off-pump coronary artery bypass grafting. Ann Thorac Surg 2000; 69: 704–10.

    CAS  PubMed  Google Scholar 

  153. Cartier R, Brann S, Dagenais F, et al. Systematic off-pump coronary artery revascularization in multivessel disease experience of 300 cases. J Thorac Cardiovasc Surg 2000; 119: 221–9.

    CAS  PubMed  Google Scholar 

  154. Bergsland J, Hasmand S, Lewin AN, et al. Coronary artery bypass grafting without cardiopulmonary bypass. An attractive alternative in high risk patients. Eur J Cardio-thorac Surg 1997; 11: 876–80.

    CAS  Google Scholar 

  155. Yokoyama T, Baumgartner FJ, Gheissari A, et al. Off-pump versus on-pump coronary bypass in high risk subgroups. Ann Thorac Surg 2000; 70: 1546–50.

    CAS  PubMed  Google Scholar 

  156. Hogue CW, Murphy SF, Schechtman KB. Davila-Roman: risk factors for early or delayed stroke after cardiac surgery. Circulation 1999; 100: 642–7.

    PubMed  Google Scholar 

  157. Jegaden O, Mikaeloff. Off-pump coronary bypass surgery: the beginning of the end? Eur J Cardio-thorac Surg 2001; 19: 237–8.

    CAS  Google Scholar 

  158. Scott R, Blackstone EH, McCarthy PM, et al. Isolated bypass grafting of the left internal thoracic artery to the left anterior descending coronary artery: late consequences of incomplete revascularization. J Thorac Cardiovasc Surg 2000; 120: 173–84.

    CAS  PubMed  Google Scholar 

  159. Ömeroglu SN, Kirali K, Güler M, et al. Mid term angiographic assessment of coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg 2000; 70: 844–50.

    PubMed  Google Scholar 

  160. Isomura T, Suma H, Horii T, et al. Minimally invasive coronary artery revascularization off-pump bypass grafting and the hybrid procedure. Ann Thorac Surg 2000; 70: 2017–22.

    CAS  PubMed  Google Scholar 

  161. Boyd WD, Rayman R, Desai ND, et al. Closed-chest coronary artery bypass grafting on a beating heart with the use of computer enhanced surgical robotic system. J Thorac Cardiovasc Surg 2000; 120: 807–9.

    CAS  PubMed  Google Scholar 

  162. Prasad SN, Ducko CT, Stephenson ER, et al. Prospective clinical trial of robotically assisted endoscopic coronary grafting with one-year follow-up. Ann Thorac Surg 2001; 72: 725–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrick B Barner MD.

Additional information

Read (Invited Lecture) at the Fifty-fourth Annual Meeting of The Japanese Association for Thoracic Surgery, Osaka, Japan, October 3–5, 2001 (President: Soichiro Kitamura, MD.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barner, H.B. Coronary revascularization in the 21ST century. Jpn J Thorac Cardiovasc Surg 50, 541–553 (2002). https://doi.org/10.1007/BF02913172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913172

Keywords

Navigation