Skip to main content
Log in

Adaptability to drought in sugar beet cultivars

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of NaCl and polyethylene glycol (PEG) on superoxide dismutase (SOD) and peroxidase (P) activities, lipid peroxidation (LP) and proline content in seeds and leaves of drought tolerant (FC-506 and MS-100) and drought sensitive (MS-612 and MS-13) sugar beet cultivars were examined. After PEG and NaCl treatment in tolerant cultivars both in seeds and leaves SOD activity mainly increased, though P activity increased only in leaves of tolerant cultivars. In drought sensitive cultivars the decrease of SOD and P activity was mostly observed. LP increased in seeds and leaves of all examined cultivars. The proline content increased in the leaves of examined cultivars and was significantly higher in drought tolerant plants. On the other hand, in the seeds only slight increase in proline content was found. The results obtained indicated that drought tolerance could be correlated with high proline content and enzymatic defense against lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LP:

lipid peroxidation

MDA:

malonyldialdehyde

P:

peroxidase

PEG:

polyethylene glycol

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

References

  • Aloni, B., Rosenhstein, G.: Proline accumulation A parameter for evaluation of sensitivity of tomato varieties to drought stress.—Physiol. Plant.61: 231–235, 1984.

    Article  CAS  Google Scholar 

  • Aspinal, D., Paleg, L.D.: Proline accumulation. Physiological aspects.—In: Paleg, L.G., Aspinal, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 206–240. Academic Press, Sydney-New York-London-Toronto 1981.

    Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, J.D.: Rapid determination of free proline for water stress studies. —Plant Soil39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bowler C., Van Montagu, M., Inze, D.: Superoxide dismutase and stress tolerance.—Annu. Rev. Plant Physiol. Plant mol. Biol.43: 83–116, 1992.

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Matowe, W.: Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation.—J. exp. Bot.32: 79–91, 1981.

    Article  CAS  Google Scholar 

  • Gašić, D., Mimica-Dukić, N.: Proline as biochemical parameter of drought resistance in corn (Zea mays L.).—Matica srpska Proc. nat. Sci. (Novi Sad)71: 99–106, 1986.

    Google Scholar 

  • Gidrol, X., Sergihini, H., Nobhani, B., Mocqvot, B., Mazilak, P.: Biochemical changes induced by accelerated againg sunflower seeds, I lipid peroxidation and membrane damage.—Physiol. Plant.76: 591–697, 1987.

    Article  Google Scholar 

  • Goyai, A., Rathore, V.S., Kcakhar, V.K.: Effect of water stress on photosynthesis, proline accumulation and nitrate reductase activity in the leaves of the genotypes of rice (Oryza sativa).— Indian J. agr. Res.19: 215–224, 1985.

    Google Scholar 

  • Hailstones, M.D., Smith, T.M.: Lipid peroxidation in relation to declining vigour of seeds of soybeans (Glycine max L.) and cabbage (Brassica oleracea L.).—J. Plant Physiol. 113: 452–456, 1988.

    Google Scholar 

  • Halliwell, B.: Oxygen is poisonous. The nature and medical importance of oxygen radicals.—Med. Lab. Sci. 158–171, 1984.

  • Hanson, A.D.: Interpreting the metabolic responses of plants to water stress.—Hort. Sci.15: 623–629, 1980.

    CAS  Google Scholar 

  • Karamanos, A.J., Drossopoulos, J.B., Niavis, C.A.: Free proline accumulation during development of two wheat cultivars with water stress.—J. agr. Sci.100: 429–439, 1983.

    Article  CAS  Google Scholar 

  • Krinsky, N.J.: Antioxidant functions of carotenoids.—Free Radical Biol. Med.7: 617–633, 1989.

    Article  CAS  Google Scholar 

  • Larson, R.A.: The antioxidants of higher plants.—Phytochemistry27: 969–978, 1988.

    Article  CAS  Google Scholar 

  • Maly, P.C., Mehta, S.L.: Effect of drought on enzymes and free proline in rice varieties.— Phytochemistry16: 1335–1357, 1977.

    Google Scholar 

  • Matkovics, B., Novak, R., Duc Hanh, H., Szabo, L., Varga, Sz.I., Zelesna, G.: A comparative study of some more important experimental animal peroxide metabolisms enzymes.—Comp. Biochem. Physiol.18: 459–462, 1972.

    Google Scholar 

  • Mirse, H.D., Fridovics, I.: The role of superoxide anion in the autoxidation of epinephrine and a simple measurement for superoxide dismutase.—J. biol. Chem.247: 3170–3175, 1972.

    Google Scholar 

  • Monk, S.L., Fagersted, K.V., Robert, M.M.C.: Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress.—Physiol. Plant.76: 456–459, 1989.

    CAS  Google Scholar 

  • Pinter, L., Kalaman, L., Palfi, G.: Determination of drought resistance in maize (Zea mays) by proline test.—Maydica27: 155–159, 1979.

    Google Scholar 

  • Placer, Z.A., Cusman, L.L., Johnson, B.C.: Estimation of product of lipid peroxidation malonyldialdehyde in biochemical systems.—Anal. Biochem.12: 359–364, 1966.

    Article  Google Scholar 

  • Rogozinska, J., Flasinske, S.: The effect of nutrien salt and osmotic stress on proline accumulation in oil seed rape plants.—Acta Physiol. Plant.9: 61–68, 1987.

    CAS  Google Scholar 

  • Simon, L.M., Fatrai, Z., Jonas, D.E., Matkovics, B.: Study of metabolism enzymes during the development ofPhaseolus vulgaris.—Biochem. Physiol. Pflanz.166: 389–393, 1974.

    Google Scholar 

  • Singh, T.N., Aspinal, D., Paleg, L.G., Bogges, S.F.: Stress metabolism. II. Change in proline concentration in excised plant tissues.—Aust. J. biol. Sci.26: 57–63, 1973.

    CAS  Google Scholar 

  • Singh, T.N., Paleg, L.G.: Proline accumulation and varietial adaptability to drought in barley. A potential metabolic measure of drought resistance.—Nature236: 188–190, 1972.

    Article  CAS  Google Scholar 

  • Smirnoff, N., Colombe, S.V.: Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavening system.—J. exp. Bot.39: 1097–1108, 1988.

    Article  CAS  Google Scholar 

  • Štajner, D., Gašić, O., Kraljević-Balalić, M., Matković, B., Varga, Sz.I.: Changes in antioxidant enzyme activities and pigments content during development of wheat.—In: Mozsik, Gy., Emerit, I., Feher, J., Matkovics, B. (ed.): Oxygen Free Radicals and Scavengers in the Natural Sciences. Pp. 45–56, Akadémiai Kiadó, Budapest 1993a.

    Google Scholar 

  • Štajner, D., Varga, I., Štrbac, D., Gašić, O., Kastori, R.: Change in malondialdehyde, hydroxyl radical, reduced glutathione content in wheat seeds germinated inpolyethylene glycol-6000 solutions.—In: Feher, J., Blazovics, A., Matkovics, B., Mezes, M. (ed.): Role of Free Radicals in Biological Systems. Pp 3–8. Akadémiai Kiadó, Budapest 1993b.

    Google Scholar 

  • Štrbac, D., Nlack, M., Štajner, D., Gašić, O., Kastori, R.: Effect of water stress on germination, growth, superoxide dismutase and alpha-amylase activity in wheast.—In: Feher, J., Blazovics, A., Matkovics, B., Mezes, M. (ed.): Role of Free Radicals in Biological Systems. Pp 29–36. Akadémiai Kiadó, Budapest 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štajner, D., Mimica-Dukić, N. & Gasić, O. Adaptability to drought in sugar beet cultivars. Biol Plant 37, 107–112 (1995). https://doi.org/10.1007/BF02913005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913005

Key words

Navigation