Skip to main content
Log in

Protective role ofPhyllanthus niruri against nimesulide induced hepatic damage

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Present study aimed to evaluate the protective role of the aqueous extract of Phyllanthus niruri (P. niruri) against nimesulide-induced hepatic disoder in mice by determining levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and alkaline phosphatase (ALP) in serum and also by measuring the hepatic content of the antioxidant enzymes, superoxide dismitase (SOD) and catalase (CAT); the free radical scavenger, reduced glutathione (GSH) and thiobarbituric acid reacting substances (TBARS). Aqueous extract of P. niruri was administered either orally or intraperitoneally in different doses and times as needed for the experiments. Intraperitoneal of the extract (100 mg/kg body weight for seven days) reduced nimesulide (750 mg/kg body weight for 3 days) induced increased levels of GOT (37.0±1.8 units/ml in control group vs. 91.8±2.0 units/ml in nimesulide treated group vs. 35.0±1.0 units/ml in extract treated group), GPT (30.0±2.1 units/ml in control group vs. 88.4±2.9 units/ml in nimesulide treated group vs. 34.1±1.8 units/ml in extract treated group), and ALP (7.86±0.47 KA units/ml in control group vs. 23.80±0.60 KA units/ml in nimesulide treated group vs. 7.30±0.40 KA units/ml, in extract treated group) to almost nomal. In addition, P. niruri restored the nimesulide induced alterations of hepatic SOD (550±20 units/mg total protein in control group vs. 310±13 units/mg total protein in nimesulide treated group vs. 515±10 units/mg total protein in extract treated group), CAT (99.5±2 units/mg total protein in control group vs. 25.0±1.5 units/mg total protein in nimesulide treated group vs. 81.0±0.8 units/mg total protein in extract treated group), GSH (90±3 nmoles/mg total protein in control group vs. 17±4.2 nmoles/mg total protein in nimesulide treated group vs. 81±1 nmoles/mg total protein in extract treated group) and TBARS (measured as MDA, 36.6±3.0 nmoles/g liver tissue in control group vs. 96.3±5.2 nmoles/g liver tissue in nimesulide treated group vs. 41.2±1.7 nmoles/g liver tissue in extract treated group) contents. Dose-dependent studies showed that the herb could protect liver even if the nimesulide-induced injury is severe. Intraperitoneal administration of the extract showed better protective effect than oral administration. Combining all, the data suggest that P. niruri possesses hepatoprotective activity against nimesulide-induced liver toxicity and probably acts via an antioxidant defense mechanism. To the best of our knowledge, this is the first report of the hepatoprotective action of P. niruri against nimesulide induced liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeschke H, Gores GJ, Cederbaum AL, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci 2002; 65: 166–76.

    Article  PubMed  CAS  Google Scholar 

  2. Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, et al. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol 2005; 42: 117–23.

    Article  PubMed  CAS  Google Scholar 

  3. Uzun H, Simsek G, Aydin S., Unal E, Karter Y, Yelmen NK, et al. Potential effects of L-NAME on alcohol-induced oxidative stress. World J Gastroenterol 2005; 11: 600–4.

    PubMed  CAS  Google Scholar 

  4. Sultana S, Ahmed S, Sharma S, Jahangir T. Emblica officinalis reverses thioacetamide-induced oxidative stress and early promotional events of primary hepatocarcinogenesis. J Pharm Pharmacol 2004; 56: 1573–9.

    Article  PubMed  CAS  Google Scholar 

  5. Bruck R, Aeed H, Avni Y, Shirin H, Matas Z, Shahmurov M, et al. Melatonin inhibits nuclear factor kappa B activation and oxidative stress and protects against thioacetamide induced liver damage in rats. J Hepatol 2004; 40: 86–93.

    Article  PubMed  CAS  Google Scholar 

  6. Megli FM, Sabatini K. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury in vivo. FEBS Lett 2004; 573: 68–72.

    Article  PubMed  CAS  Google Scholar 

  7. Myagmar BE, Shinno E, Ichiba T, Aniya Y. Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats. Phytomedicine 2004; 11: 416–23.

    Article  PubMed  CAS  Google Scholar 

  8. Bei W, Peng W, Ma Y, Xu A. NaoXinQing, an anti-stroke herbal medicine, reduces hydrogen peroxide-induced injury in NG108-15 cells. Neurosci Lett 2004; 363: 262–5.

    Article  PubMed  CAS  Google Scholar 

  9. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 2004; 279: 8919–29.

    Article  PubMed  CAS  Google Scholar 

  10. Gyamfi MA, Aniya Y. Antioxidant properties of Thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea. Biochem Pharmacol 2002; 63: 1725–37.

    Article  PubMed  CAS  Google Scholar 

  11. Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghett A, Crespi-Perellino N, Mirasoli M, Cantelli-Forti G, Paolini M. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci 2000; 67: 2997–3006.

    Article  PubMed  CAS  Google Scholar 

  12. Chauhan CK, Nanivadekar SA, Billimoria FR. Effect of a herbal hepatoprotective product on drug metabolism in patients of cirrhosis and hepatic enzyme function in experimental liver damage. Ind J Pharmacol 1992; 24: 107–10.

    Google Scholar 

  13. Lin TJ, Su CC, Lan CK, Jiang DD, Tsai JL, Tsai MS. Acute poisonings with Breynia officinalis—an outbreak of hepatotoxicity. J Toxicol Clin Toxicol 2003, 41: 591–4.

    Article  PubMed  Google Scholar 

  14. Naik AD, Juvekar AR. Effects of alkaloidal extract of Phyllanthus niruri on HIV replication. Indian J Med Sci 2003; 57: 387–93.

    PubMed  CAS  Google Scholar 

  15. Unander DW, Webster GL, Blumberg BS. Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J Enthnopharmacol 1995; 45: 1–18.

    Article  CAS  Google Scholar 

  16. Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, Pieters L, Totte J, Vlietinck AJ. Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo. J Ethnopharmacol 1999; 68: 193–203.

    Article  PubMed  CAS  Google Scholar 

  17. Odetola AA, Akojenu SM. Anti-diarrhoeal and gastro-intestinal potentials of the aqueous extract ofPhyllanthus amarus (Euphorbiaceae). Afr J Med Sci 2000; 29: 119–22.

    CAS  Google Scholar 

  18. Asha VV, Akhila S, Wills PJ, Subramoniam A. Further studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J Ethnopharmacol 2004; 92: 67–70.

    Article  PubMed  CAS  Google Scholar 

  19. Padma P, Setty OH. Protective effect of Phyllanthus against CCl4-induced mitochondrial dysfunction. Life Sci 1999; 64: 2411–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sebastian T, Setty OH. Protective effect ofPhyllanthus against ethanol-induced mitochondrial dysfunction. Alcohol 1999; 17: 29–34.

    Article  PubMed  CAS  Google Scholar 

  21. Jeena KJ, Joy KL, Kuttan R. Effect of Emblica officianlis,Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett 1999; 136: 11–6.

    Article  PubMed  CAS  Google Scholar 

  22. Giuliano F, Ferraz JG, Pereira R, de Nucci G, Warner TD. Cyclooxygenase selectivity of non-steroidal anti-inflammatory drugs in humans: ex vivo evaluation. Eur J Pharmacol 2001; 426: 95–103.

    Article  PubMed  CAS  Google Scholar 

  23. Bennett A. Overview of nimesulide. Rheumatology (Oxford) 1999; (38 Suppl 1): 1–3.

    Article  Google Scholar 

  24. Davis R, Brogden RN. Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1994; 48: 431–54.

    Article  PubMed  CAS  Google Scholar 

  25. McCormick PA, Kennedy F, Curry M, Traynor O. COX 2 inhibitor and fulminant hepatic failure. Lancet 1999; 353: 40–1.

    Article  PubMed  CAS  Google Scholar 

  26. Schattner A, Sokolovskaya N, Cohen J, Fatal hepatitis and renal failure during treatment with nimesulide. J Intern Med. 2000; 247: 153–5.

    Article  PubMed  CAS  Google Scholar 

  27. Lucena MI, Camargo R, Andrade RJ, Perez-Sanchez CJ, Sanchez De La Cuesta F. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology 2001: 33: 123–30.

    Article  PubMed  CAS  Google Scholar 

  28. Rodrigo L, de Francisco R, Perez-Pariente JM, Cadahia V, Tojo R, Rodriguez M, Lucena MI, Andrade RJ. Nimesulide-induced severe hemolytic anemia and acute liver failure leading to liver transplantation. Scand J Gastroenterol 2002; 37: 1341–3.

    Article  PubMed  CAS  Google Scholar 

  29. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28: 56–63.

    PubMed  CAS  Google Scholar 

  30. Kind PRN, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 1954; 7: 322–6.

    Article  PubMed  CAS  Google Scholar 

  31. Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 1972; 46: 849–54.

    Article  PubMed  CAS  Google Scholar 

  32. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984; 21130–2.

  33. Bonaventura J, Schroeder WA, Fang S. Human erythrocyte catalase: an improved method of isolation and a revaluation of reported properties. Arch Biochem Biophys 1972; 150: 606–17.

    Article  PubMed  CAS  Google Scholar 

  34. Ellman GL. Tissue sulphydryl group. Arch Biochem Biophys 1959; 82: 70–7.

    Article  PubMed  CAS  Google Scholar 

  35. Esterbauer H and Cheeseman KH. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods enzymol 1990; 186: 407–21.

    Article  PubMed  CAS  Google Scholar 

  36. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–54.

    Article  PubMed  CAS  Google Scholar 

  37. Sbeit W, Krivoy N, Shiller M, Farah R, Cohen HI, Struminger L, et al. Nimesulide-induced acute hepatitis. Ann Pharmacother 2001; 35: 1049–52.

    Article  PubMed  CAS  Google Scholar 

  38. Van Steenbergen W, Peeters P, De Bondt J, Staessen D, Buscher H, Laporta T, et al. Nimesulide-induced acute hepatitis: evidence from six cases. J Hepatol 1998; 29: 135–41.

    Article  PubMed  Google Scholar 

  39. Bernareggi A. Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet 1998; 35: 247–74.

    Article  PubMed  CAS  Google Scholar 

  40. Berson A, Wolf C, Berger V, Fau D, Chachaty C, Fromenty B, et al. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J Pharmacol Exp Ther 1991; 257: 714–9.

    PubMed  CAS  Google Scholar 

  41. Ritter CL, Malejka-Giganti D. Nitroreduction of nitrated and C-9 oxidized fluorenesin vitro. Chem Res Toxicol 1998; 11: 1361–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mingatto FE, dos Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C. Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol 2000; 131: 1154–60.

    Article  PubMed  CAS  Google Scholar 

  43. Kizaki M, Sakashita A, Karmakar A, Lin CW, Koeffler HP. Regulation of manganese superoxide dismutase and other antioxidant genes in normal and leukemic hematopoietic cells and their relationship to cytotoxicity by tumor necrosis factor. Blood 1993; 82: 1142–50.

    PubMed  CAS  Google Scholar 

  44. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem 1991; 266: 22028–34.

    PubMed  CAS  Google Scholar 

  45. Halliwell B, Gutteridge JMC. Free radicals in biology and Medicine, 3rd ed. (Oxford University Press, Oxford), 1999. p. 237–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, M., Sil, P.C. Protective role ofPhyllanthus niruri against nimesulide induced hepatic damage. Indian J Clin Biochem 22, 109–116 (2007). https://doi.org/10.1007/BF02912892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912892

Key Words

Navigation