Skip to main content
Log in

Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: A comparative study

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Studies were carried out to examine and compare the effects of alloxan-diabetes on reactive oxygen species (ROS) related parameters in the heart from male and female rats. Effects of insulin treatment were also evaluated. The diabetic state severely compromised the ROS defense mechanism in the cardiac tissue and the effects were more pronounced in the female than in the male rats. There was several fold increase in the xanthine oxidase (XO) activity in general and the magnitude of increase was higher in the females; insulin treatment resulted in further increase in the XO activity. The glucose-6-phosphate dehydrogenase (G6PDH) and catalase activities decreased and the reduced glutathione (GSH) content in mitochondria was completely depleted in diabetic state with significant decrease in the GSH levels in the post-mitochondrial fraction; the effect was more pronounced in the females. The superoxide dismutase (SOD) and glutathione peroxidase (GPox) activities increased in the diabetic state to a greater extent in male rats. Insulin treatment had restorative action only on some parameters. In conclusion, our results suggest that diabetic state may further compromise the weak ROS defense systems in the heart thus initiating a lesion at the level of mitochondria which ultimately leads to cardiomyopathy and the effects are especially more pronounced in the females. Our results also pointed out that insulin treatment was ineffective in restoring ROS related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Songer TJ, Zimmet PZ. Epidemiology of type-2 diabetes: an international prevalence. Pharmacoeconomics 1995; 8: 1–11.

    PubMed  Google Scholar 

  2. Zimmet PZ. Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 1999; 42: 499–518.

    Article  PubMed  CAS  Google Scholar 

  3. Alberti KGMM, Press CM. The biochemistry of the complications of diabetes mellitus. In: Keen M, Jarrett J. editors. Complications of diabetes, London: Edward Arnold Ltd., 1982: 231–70.

    Google Scholar 

  4. Hammes HP. Pathophysiological mechanisms of diabetic angiopathy. J Diab Compl 2003; 17: 16–9.

    Article  Google Scholar 

  5. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34: 29–34.

    Article  PubMed  CAS  Google Scholar 

  6. Pyorala K. Diabetes and coronary heart disease. Acta Endocrinol 1985; 272: 11–9.

    CAS  Google Scholar 

  7. Axelrod L. Response of congestive heart failure to correction of hyperglycemia in the presence of diabetic nephropathy. N Engl J Med 1975; 293: 1243–5.

    PubMed  CAS  Google Scholar 

  8. Sowers JR, Frohlich ED. Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. Med Clin North Am 2004; 88: 63–82.

    Article  PubMed  CAS  Google Scholar 

  9. Avogaro A, Vigili de Kreutzenberg S, Negut C, Tiengo A, Scognamiglio R. Diabetic cardiomyopathy: a metabolic perspective. Am J Cardiol 2004; 93: 13A-16A.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Z, Hoy WE. Association between diabetes and coronary heart disease in Aboriginal people: are women disadvantaged? Med J Aust 2004; 180: 508–11.

    PubMed  Google Scholar 

  11. Regan T. J. Congestive heart failure in the diabetic. Annu Rev Med 1983; 34: 161–8.

    Article  PubMed  CAS  Google Scholar 

  12. Mc Neill JH, Tahiliani AG. Diabetes-induced cardiac changes. TIPS 1986; 7: 364–7.

    Google Scholar 

  13. Airaksinen KE, Koivikko ML, Niemela MJ, Tahvanainen KU, Linnaluoto M, Huikuri HV. Diabetes and haemodynamic reactions to acute coronary occlusion. Int J Cardiol 2004; 95: 237–44.

    Article  PubMed  Google Scholar 

  14. Barrett-Connor E, Giardina EG, Gitt AK, Gudat U, Steinberg HO, Tschoepe D. Women and heart disease: the role of diabetes and hyperglycemia. Arch Intern Med 2004; 164: 934–42.

    Article  PubMed  Google Scholar 

  15. Uusitupa M. Coronary heart disease and left ventricular performance in newly diagnosed non-insulin-dependant diabetics. MD. Dissertation, University of Kuopio: 1983.

  16. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 219: 1–14.

    PubMed  CAS  Google Scholar 

  17. Ambrosone CB. Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signaling. 2000; 2: 903–17.

    Article  CAS  Google Scholar 

  18. Sikka SC. Reactive impact of oxidative stress on male reproductive function. Curr Med Chem 2001; 8: 851–62.

    PubMed  CAS  Google Scholar 

  19. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–85.

    PubMed  CAS  Google Scholar 

  20. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann NY Acad Sci 2002; 959: 368–83.

    Article  PubMed  CAS  Google Scholar 

  21. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 2003; 300: 216–22.

    Article  PubMed  CAS  Google Scholar 

  22. Pekiner B, Ulusu NN, Das-Evcimen N, Sahilli M, Aktan F, Stefek M et al. In vivo treatment with stobadine prevents lipid peroxidation, protein glycation and calcium overload but does not ameliorate Ca2+-ATPase activity in heart and liver of streptozotocin-diabetic rats: comparison with vitamin E. Biochim Biophys Acta 2002; 1588: 71–8.

    PubMed  CAS  Google Scholar 

  23. Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratisl Lek Listy 2000; 101: 541–51.

    PubMed  CAS  Google Scholar 

  24. Manea A, Constantinescu E, Popov D, Raicu M. Changes in oxidative balance in rat pericytes exposed to diabetic conditions. J Cell Mol Med 2004; 8: 117–26.

    Article  PubMed  CAS  Google Scholar 

  25. Raza H, John A. Glutathione metabolism and oxidative stress in neonatal rat tissues from streptozotocin-induced diabetic mothers. Dia/Metabol Res Rev 2004; 20: 72–8.

    Article  CAS  Google Scholar 

  26. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605.

    PubMed  CAS  Google Scholar 

  27. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59: 1609–23.

    Article  PubMed  CAS  Google Scholar 

  28. Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney and brain mitochondria. Arch Biochem Biophys 1977; 182: 155–63.

    Article  PubMed  CAS  Google Scholar 

  29. Doussiere J, Ligeti E, Brandolin G, Vignais PV. Control of oxidative phosphorylation in rat heart mitochondria. The role of adenine nucleotide carrier. Biochim Biophys Acta 1984; 766: 492–500.

    Article  PubMed  CAS  Google Scholar 

  30. Katyare SS, Satav JG. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat kidney mitochondria. A comparative study of early and late effects. Dia Obes Metabol 2005; 7: 555–62.

    Article  CAS  Google Scholar 

  31. Billimoria FR, Katyare SS, Patel SP. Insulin status differentially affects energy transduction in cardiac mitochondria from male and female. Dia Obes Metabol 2006; 8: 67–74.

    Article  CAS  Google Scholar 

  32. Katyare SS, Rajan RR. Altered energy coupling in rat heart mitochondria followingin vitro treatment with propranolol. Biochem Pharmacol 1991; 42: 617–23.

    Article  PubMed  CAS  Google Scholar 

  33. Kumthekar MM, Katyare SS. Altered kinetic attributes of Na+K+, ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Ind J Exptl Biol 1992; 30: 26–32.

    CAS  Google Scholar 

  34. Satav JG, Dave KR, Katyare SS. Influence of insulin status on extra-mitochondrial oxygen metabolism in the rat. Horm Metab Res 2000; 32: 57–61.

    Article  PubMed  CAS  Google Scholar 

  35. Dave KR, Katyare SS. Effect of alloxan induced diabetes on serum and cardiac butyrylcholinesterase in the rat. J Endocrinol 2002; 175: 241–50.

    Article  PubMed  CAS  Google Scholar 

  36. Nerurkar MA, Satav JG, Katyare SS. Insulin dependent changes in cathepsin D activity in rat liver, kidney, brain and heart. Diabetologia 1988; 31: 119–22.

    Article  PubMed  CAS  Google Scholar 

  37. Park C, Drake RL. Insulin mediates the stimulation of pyruvate kinase by a dual mechanism. Biochem J 1982; 208: 333–37.

    Google Scholar 

  38. Swegert CV, Dave KR, Katyare SS. Effect of aluminium—induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mech Age Develop 1992; 112: 27–42.

    Article  Google Scholar 

  39. Kaushal R, Dave KR, Katyare SS. Paracetamol hepatotoxicity and microsomal function. Environ. Toxicol Pharmacol 1999; 1: 67–74.

    Article  Google Scholar 

  40. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86: 271–78.

    Article  PubMed  CAS  Google Scholar 

  41. Siebeneick HU, Baker BR. Guanine deaminase and xanthine oxidase. In: Jacoby WB, Wilcheck M,. editors, Methods Enzymol Vol 34, New York: Academic Press, 1974: 523–8.

    Google Scholar 

  42. Marklund S, Marklund G. Involment of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469–74.

    Article  PubMed  CAS  Google Scholar 

  43. Patel SP, Katyare SS. Differential pH sensitivity of tissue superoxide dismutases. Ind. J Clin Biochem 2006; 21: 129–33.

    Article  CAS  Google Scholar 

  44. Hafeman DG, Sunde RA, Hoekstra WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 1974; 104: 580–87.

    PubMed  CAS  Google Scholar 

  45. Cohen P, Rosemeyer MA. Glucose-6-phosphate dehydrogenase from human erythrocyte. In: Colowick SP, Kaplan NO editors. Methods in Enzymology Vol 41, New York: Academic Press, 1975; 208–16.

    Google Scholar 

  46. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem 1951; 193: 265–75.

    PubMed  CAS  Google Scholar 

  47. Mathews CK, van Holde KE. Biochemistry 2nd Ed, The Benjamin Cummings Publishing Co. Inc. Menlo Park, California, 1996; pp. 424–425.

    Google Scholar 

  48. Patel SP, Katyare SS. A comparative study of reactive oxygen species (ROS) related parameter in rat tissues. Ind J Clin Biochem 2006; 21: 48–53.

    Article  CAS  Google Scholar 

  49. Akhileshwar V, Patel SP, Katyare SS. Effect of alloxan-diabetes and subsequent insulin treatment on reactive oxygen species (ROS) related parameters in mitochindrial and post-mitochondrial fractions from rat liver. Yonsei Med J 2006 (communicated).

  50. Mates JM. Effect of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol 2000; 153: 83–104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra S. Katyare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhileshwar, V., Patel, S.P. & Katyare, S.S. Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: A comparative study. Indian J Clin Biochem 22, 84–90 (2007). https://doi.org/10.1007/BF02912887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912887

Key words

Navigation