Fibers and Polymers

, Volume 3, Issue 4, pp 159–168

Processing of polyurethane/polystyrene hybrid foam and numerical simulation

  • Won Ho Lee
  • Seok Won Lee
  • Tae Jin Kang
  • Kwansoo Chung
  • Jae Ryoun Youn
Article

DOI: 10.1007/BF02912661

Cite this article as:
Lee, W.H., Lee, S.W., Kang, T.J. et al. Fibers Polym (2002) 3: 159. doi:10.1007/BF02912661

Abstract

Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

Keywords

Polyurethane Polystyrene Hybrid foam Mold filling Control volume finite element method 

Copyright information

© The Korean Fiber Society 2002

Authors and Affiliations

  • Won Ho Lee
    • 1
  • Seok Won Lee
    • 1
  • Tae Jin Kang
    • 1
  • Kwansoo Chung
    • 1
  • Jae Ryoun Youn
    • 1
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations