Skip to main content
Log in

The cytological and genetical mechanisms of plant domestication exemplified by four crop models

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Plant domestication includes a number of evolutionary mechanisms, such as mutation, hybridization, polyploidization, selection, and genetic drift. These evolutionary mechanisms will be used as entities in a graphical model system to be used as a formal descriptive method to describe the process of plant domestication. The most important crops can be arranged in four different crop domestication models: the bread wheat model, the cotton model, the soybean model, and the chili pepper model. Mixed-model situations occur. The existence of reproductive isolation connects the crop models with the gene pool concept. Cluster and analysis of taxa based on a numerical representation of crossability data allows a precise characterization of the different gene pools. The combined approach of crop domestication models, dendrograms, and gene pool representation creates a clear description of the mechanisms leading to a particular set of reproductive barriers and the extent of these barriers. The four models described here are general outlines. The included entities can be fine tuned to specific crop situations. This will be worked out forAllium cepa (onion) andLesquerella densipila (an oil seed crop). These crop domestication models can also be used in developing breeding strategies by illustrating the rationale of desired approaches such as hybridization improvement techniques or transformation.

Résumé

La domestication de plantes encompasse plusieurs mécanismes évolutionaires, tels que mutation, hybridisation, polyploïdie, selection et “genetic drift” (dispersion génétiques). Ces mécanismes seront présentés comme unités dans un modèle graphique qui sera utilisé comme méthode descriptive formelle, pour décrire le processus de la domestication de plantes. Les cultures les plus importantes pourront être arrangées dans quatre modèles differents de domestication de plantes: modèle blé tendre, modèle cotton, modèle soja, et modèle poivron (piquant). Des modèles mixtes existent aussi. La présence d'isolation réproductive associe les modèles de domestication avec le concept “gene pool” (réseau de gènes). L'analyse numérique des taxons fondée sur des données de croissance permet une caractérisation des différentes pools de gènes. Des modèles de domestication, des dendrogrammes et réprésentation “gene pool” se rassemblent afin de créer une description des mécanismes menant à une série de barrières réproductives et la mesure de ces barrières. Les quatre modèles décrits ici sont des schémas généralisés. Les unités incluses peuvent être adaptées pour des situations détaillées avec des cultures spécifiques. Comme exampleAllium cepa (oignon) etLesquerella densipila (plante oléifère) on été traités en détail. Ces modèles de domestication de cultures peuvent être utilisés aussi afin de développer des stratégies pour l'amélioration des plantes en illustrant la rationalité des approches désirables; y inclus des techniques d'amélioration comme la hybridisation et la transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aldrich, P. R. &J. Doebley. 1992. Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wildSorghum bicolor. Theor. Appl. Genet.85: 293–302.

    Google Scholar 

  • Alleweldt, G., P. Spiegel-Roy &B. Reisch. 1991. Grapes (Vitis). Pages 289–327in J. N. Moore & J. R. Ballington (eds.) Genetic resources of temperate fruit and nut crops. International Society for Horticultural Science, Wageningen.

    Google Scholar 

  • Anderson, E. 1952. Plants, man and life. Little, Brown, Boston.

    Google Scholar 

  • Arias, D. M. &L. H. Rieseberg. 1994. Gene flow between cultivated and wild sunflowers Theor. Appl. Genet.89: 655–660.

    Google Scholar 

  • Barrett, H. C. &A. M. Rhodes. 1976. A numerical taxonomic study of affinity relationships in cultivatedCitrus and its close relatives. Sys. Bot.1: 105–136.

    Google Scholar 

  • Benz, B. F. &H. H. Iltis. 1992. Evolution of female sexuality in the maize ear (Zea mays L. subsp.mays-Gramineae). Econ. Bot.46: 212–222.

    Google Scholar 

  • Berthou, F., C. Mathieu, &F. Vedel. 1983. Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genusCoffea L. Theor Appl. Genet.65: 77–84.

    CAS  Google Scholar 

  • Bohac, J. R., P. D. Dukes &D. F. Austin. 1995. Sweet potato,Ipomoea batatas (Convolvulaceae). Pages 57–62in J. Smartt & N. W. Simmonds (eds.) Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Bosemark, N. O.. 1993. Sugar beet. Pages 123–136in Traditional crop breeding practices: An historical review to serve as a baseline for assessing the role of modern biotechnology. Organisation for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Bothmer, R. von, M. Gustafsson &S. Snogerup. 1995.Brassica sect. Brassica (Brassicaceae). II. Inter- and intraspecific crosses with cultivars ofB. oleracea. Genet. Res. & Crop Evol.42: 165–178.

    Google Scholar 

  • —. 1991. An ecogeographical study of the genusHordeum. Systematic and Ecogeographic Studies on Crop Genepools7. International Board of Plant Genetic Resources, Rome.

    Google Scholar 

  • Boudry, P., M. Mörchen, P. Saumitou-Laprade, Ph. Vernet &H. van Dijk. 1993. The origin and evolution of weed beets: Consequences for the breeding and release of herbicide-resistant transgenic sugar beetes. Theor. Appl. Genet.87: 471–478.

    Google Scholar 

  • Brandenburg, W. A.. 1981. Possible relationships between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Kulturpflanze29: 369–375.

    Google Scholar 

  • Brummitt, R. K. 1994. In defence of paraphyletic taxa. Paper given at AETFAT congress “The biodiversity of African plants.” Wageningen.

  • Cameron, J. W. &R. K. Soost. 1976. Citrus,Citrus. Pages 261–265in N. W. Simmonds (eds.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Chang, T. T. 1976. Rice,Oryza sativa andOryza glaberrima. Pages 98–104in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • — 1995. Rice,Oryza sativa andOryza glaberrima (Gramineae—Oryzeae). Pages 147–155in J. Smartt & N. W. Simmonds (eds), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, W. Hedron B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn Jr.,S. W. Graham, S. C. H. Barrett, S. Dayanandan &V. A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard.80: 528–580.

    Google Scholar 

  • Close, P. S., R. C. Shoemaker &P. Keim. 1989. Distribution of restriction site polymorphisms within the chloroplast genome of the genusGlycine, subgenusSoja. Theor. Appl. Genet.77: 768–776.

    CAS  Google Scholar 

  • Coursey, D. G. 1976. Yams,Dioscorea spp. Pages 70–74in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Cummings, M. P. 1994. Transmission patterns of eukaryotic transposable elements: Arguments for and against horizontal transfer. Trans. Ecol. Evol.9: 141–145.

    Google Scholar 

  • Damme, J. M. M. van. 1992. Hybridisation between wild and transgenic plants. Pages 81–92in J. Weverling & G. P. Hekstra (eds), Ecological effects of genetically modified organisms. Netherlands Ecological Society, Arnhem.

    Google Scholar 

  • Debouck, D. G. &J. Smartt. 1995. Beans,Phaseolus spp. (Leguminosae-Papilionoideae). Pages 287–294in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2, Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Doebley, J. F.. 1990a. Molecular evidence and the evolution of maize. Econ. Bot.44 (suppl.): 6–27.

    CAS  Google Scholar 

  • — 1990b. Molecular evidence for gene flow amongZea species. Bio Science40: 443–448.

    Google Scholar 

  • — &P. Sisco. 1989. On the origin of the maize male sterile cytoplasms: It's completely unimportant, that's why it's so interesting. Maize Genet. Coop. Newslett.63: 108–109.

    Google Scholar 

  • Doggett, H. &B. N. Majisu. 1968. Disruptive selection in crop development. Heredity23: 1–23.

    Google Scholar 

  • — &K. E. Prasado Rao. 1995. Sorghum,Sorghum (Gramineae-Andropogonae). Pages 173–180in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Doyle, J. J., J. L. Doyle &A. H. D. Brown. 1990. A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenusGlycine): Congruence with morphological and crossing groups. Evoution44: 371–389.

    CAS  Google Scholar 

  • Duvall, M. R. &J. F. Doebley. 1990. Restriction site variation in the chloroplast genome ofSorghum (Poaceae). Syst. Bot.15: 472–480.

    Google Scholar 

  • Endrizzi, J. E. 1991. The origin of the allotetraploid species ofGossypium L. Pages 449–470in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: Genetics, breeding, evolution, Part B. Elsevier, Amsterdam.

    Google Scholar 

  • Evans, A. &J. Weir. 1981. The evolution of weed beet in sugar beet crops. Kulturpflanze29: 301–310.

    Google Scholar 

  • Evans, G. M. 1976.Rye, Secale cereale. Pages 108–111in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Fedak, G. 1977. Barley-wheat hybrids. Pages 261–267in E. Sanchez-Monge & F. Garcia-Olmedo (eds.), Interspecific hybridization in plant breeding, Proceedings of the Eighth Congress of EUCARPIA, Madrid.

  • Feldman, M. 1976. Wheats,Triticum spp. Pages 120–128in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • —,F. G. H. Lupton &T. E. Miller. 1995. Wheats,Triticum (Gramineae-Triticinae). Pages 184–192in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Ford-Lloyd, B. W. &J. G. Hawkes. 1986. Weed beets: Their origin and classification. Acta Hort.182: 399–402.

    Google Scholar 

  • Fregene, M. A., J. Vargas, J. Ikea, F. Angel, J. Tohme, R. A. Asiedu, M. O. Akoroda &W. M. Roca. 1994. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theor. Appl. Genet.89: 719–727.

    CAS  Google Scholar 

  • Frietema de Vries, F. T., R. van der Meijden &W. A. Brandenburg. 1994. Botanical files on lettuce (Lactuca sativa): On the chance for gene flow between wild and cultivated lettuce (Lactuca sativa L. includingL. serriola L., Compositae) and the generalized implications for risk-assessments on genetically modified plants. Gorteria supplement 2, Rijksherbarium/Hortus Botanicus, Leiden.

    Google Scholar 

  • Gerstel, D. U. 1976. Tobacco,Nicotiana. Pages 273–277in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • — &V. A. Sisson. 1995. Tobacco,Nicotiana tabacum (Solanaceae). Pages 458–463in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Gliddon, C. 1994. The impact of hybrids between genetically modified crop plants and their related species: Biological models and theoretical perspectives. Molec. Ecol.3: 41–44.

    Google Scholar 

  • Gonzalez, L. G. &B. V. Ford-Lloyd. 1987. Facilitation of wide-crossing through embryo rescue and pollen storage in interspecific hybridization of cultivatedAllium species. Pl. Breeding98: 318–322.

    Google Scholar 

  • Goodman, M. M. 1988. The history and evolution of maize. C.R.C. Crit. Rev. Pl. Sci.7: 197–220.

    Google Scholar 

  • Goodspeed, T. H. 1954. The genusNicotiana. Chron. Bot.16(1–6).

    Google Scholar 

  • Gould, F. 1988. Evolutionary botany and genetically engineered crops. BioScience38: 26–33.

    Google Scholar 

  • Grant, J. E., J. P. Grace, A. H. D. Brown &E. Putievsky. 1984. Interspecific hybridization inGlycine Willd. subgenusGlycine (Leguminosae). Austral. J. Bot.32: 655–663.

    Google Scholar 

  • —,R. Pullen, A. H. D. Brown, J. P. Grace &P. M. Gresshoff. 1986. Cytogenetic affinity between the new speciesGlycine argyrea and its congeners. J. Hered.77: 423–426.

    Google Scholar 

  • Grant, V. 1981. Plant speciation. Columbia University Press, New York.

    Google Scholar 

  • Green, R., A. Vardi &E. Galun. 1976. Chloroplast DNA in citrus. The plastome ofCitrus. Physical map, variation amongCitrus cultivars and species and comparison with related genera. Theor. Appl. Genet.72: 170–177.

    Google Scholar 

  • Gregorius, H.-R. &W. Steiner. 1993. Gene transfer in plants as a potential agent of introgression. Pages 83–107in K. Wöhrmann & J. Tomiuk (eds.), Transgenic organisms, risk assessment of deliberate release. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Grun, P. 1990. The evolution of cultivated potatoes. Econ. Bot.44 (suppl.): 39–55.

    Google Scholar 

  • Hahn, S. K. 1995. Yams,Dioscorea spp. (Dioscoreaceae). Pages 112–120in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Hammer, K. 1984. Das Domestikationssyndrom. Die Kulturpflanze32: 11–34.

    Google Scholar 

  • Hancock, J. F. 1992. Plant evolution and the origin of crop species. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Hanelt, P. 1986. Pathways of domestication with regard to crop types. Pages 179–200in C. Barigozzi (ed.), The origin and domestication of cultivated plants. Elsevier, Amsterdam.

    Google Scholar 

  • —,J. Schultze-Motel, R. Fritsch, J. Kruse, H. I. Maass, H. Ohle &K. Pistrick. 1992. Infrageneric grouping ofAllium—the Gatersleben approach. Pages 107–123in P. Hanelt, K. Hammer & H. Knüpffer (eds.), The genusAllium—taxonomic problems and genetic resources. Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany.

    Google Scholar 

  • Harlan, J. R. 1971. Agricultural origins: Centers and noncenters. Science174: 468–474.

    PubMed  Google Scholar 

  • — 1992. Crops and man. Ed. 2. American Society of Agronomy, Crop Science Society of America, Madison, WI.

    Google Scholar 

  • — 1995. Barley,Hordeum vulgare (Gramineae-Triticinae). Pages 140–147in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • — &J. M. J. de Wet. 1971. Towards a rational taxonomy of cultivated plants. Taxon20: 509–517.

    Google Scholar 

  • ——. &E. G. Price. 1973. Comparative evolution of ereals. Evolution27: 311–325.

    Google Scholar 

  • Harries, H. C. 1995. Coconut,Cocos nucifera (Palmae). Pages 389–394in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Havey, M. J. 1992. Restriction enzyme analysis of the chloroplast and nuclear 45S ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). Pl. Syst. Evol.183(1–2): 17–31.

    CAS  Google Scholar 

  • Hawkes, J. G. 1988. The evolution of cultivated potatoes and their tuber-bearing wild relatives. Die Kulturpflanze36: 189–208.

    Google Scholar 

  • — &M. T. Jackson. 1992. Taxonomic and evolutionary implications of the Endosperm Balance Number hypothesis in potatoes. Theor. Appl. Genet.84: 180–185.

    Google Scholar 

  • Hayes, D. G. &R. Kleiman. 1993. 1,3-specific lipolysis ofLesquerella fendleri oil by immobilized and reverse-micellar encapsulated enzymes. J. Amer. Oil Chem. Soc.70: 1121–1127.

    CAS  Google Scholar 

  • Hayward, M. D. &E. L. Breese. 1993. Population structure and variability. Pages 16–30in M. Hayward, N. Bosemark & I. Romagosa (eds.), Plant breeding: Principles and prospects. Chapman and Hall, London.

    Google Scholar 

  • Heiser, C. B., Jr. 1969. The North American sunflowers (Helianthus). Mem. Torrey Bot. Club22(3): 1–218.

    Google Scholar 

  • — 1988. Aspects of unconscious selection and the evolution of cultivated plants. Euphytica37: 77–81.

    Google Scholar 

  • Helm, J. 1963. Morphologisch-taxonomische Gliederung der Kultursippen vonBrassica oleracea. Kulturpflanze11: 92–210.

    Google Scholar 

  • Hetterscheid, W. L. A. &W. A. Brandenburg. 1995. Culton versus taxon: Conceptual issues in cultivated plant systematics. Taxon44: 161–173.

    Google Scholar 

  • Howell, E. C., H. J. Newburgh, R. L. Swennen, L. A. Whithers &B. V. Ford-Lloyd. 1994. The use of RAPD for identifying and classifyingMusa germplasm. Genome37: 328–332.

    PubMed  CAS  Google Scholar 

  • Ishi, T., T. Terachi, N. Mori &K. Tsunewaki. 1993. Comparative study on the chloroplast, mitochondrial and nuclear genome differentiation in two cultivated rice species,Oryza sativa andO. glaberrima, by RFLP analysis. Theor. Appl. Genet.86: 88–96.

    Google Scholar 

  • Jacob, M., D. Zink &W. Nagl. 1995. RFLPs of the rRNA genes in the genusPhaseolus. Genet. Res. Crop Evol.42: 97–106.

    Google Scholar 

  • Jeffrey, C. 1980. A review of the Cucurbitaceae. Bot J. Linn. Soc.81: 233–247.

    Google Scholar 

  • Jennings, D. L. 1976. Cassava,Manihot. Pages 81–84in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Jouve, N. & D. Montalvo. 1977. Meiotic behaviour in hybrids between6x Triticale andSecale cereale L. Pages 191–197in E. Sanchez-Monge & F. Garcia-Olmedo (eds.), Interspecific hybridization in plant breeding, Proceedings of the Eighth Congress of EUCARPIA, Madrid, Spain.

  • Kaneda, C. 1993. Rice. Pages 37–46in Traditional crop breeding practices: An historical review to serve as a baseline for assessing the role of modern biotechnology. Organisation for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Keim, P., R. C. Shoemaker &R. G. Palmer. 1989. Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet.77: 786–792.

    Google Scholar 

  • Kenton, A., A. S. Parokonny, Y. Y. Gleba &M. D. Bennett. 1993. Characterization of theNicotiana tabacum L. genome by molecular genetics. Molec. Gen. Genet.240: 159–169.

    CAS  Google Scholar 

  • Kerlan, M. C., A. M. Chèvre, F. Eber, A. Baranger &M. Renard. 1992. Risk assessment of outcrossing of transgenic rapeseed to related species. I. Interspecific hybrid production under optimal conditions with emphasis on pollination and fertilization. Euphytica62: 145–153.

    Google Scholar 

  • Kesseli, R., O. Ochoa &R. Michelmore. 1991. Variation at RFLP loci inLactuca spp. and origin of cultivated lettuce (L. sativa). Genome34: 430–436.

    Google Scholar 

  • Khairallah, M. M., B. B. Sears &M. W. Adams. 1992. Mitochondrial restriction fragment length polymorphism in wildPhaseolus vulgaris L.: Insights on the domestication of the common bean. Theor. Appl. Genet.84: 915–922.

    CAS  Google Scholar 

  • Kihara, H. 1954. Considerations on the evolution and distribution ofAegilops species based on the analyser method. Cytologia19: 336–357.

    Google Scholar 

  • — &F. Lilienfeld. 1932. Genomanalyse beiTriticum undAegilops. IV. Untersuchungen anAegilops × Triticum- undAegilops × Aegilops-bastarden. Cytologia3: 384–456.

    Google Scholar 

  • — & —. 1934. Genomanalyse beiTriticum andAegilops. V.Triticum timopheevi. Cytologia4: 87–122.

    Google Scholar 

  • — &I. Nishiyama. 1930. Genomanalyse beiTriticum undAegilops. I. Genomaffinitaeten in tri-, tetra- und pentaploiden Weizenbastarden. Cytologia1: 263–284.

    Google Scholar 

  • Kirkbride, J. H. 1994. Biosystematic monograph of the genusCucumis (Cucurbitaceae). Parkway Publishers, Boone, NC.

    Google Scholar 

  • Klinger, T., D. R. Elam &N. C. Ellstrand. 1991. Radish as a model system for the study of engineered gene escape rates via crop-weed mating. Conservation Biol.5: 531–535.

    Google Scholar 

  • Kofoet, A., C. Kik, W. A. Wietsma &J. N. de Vries. 1990. Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) fromAllium roylei Stearn in the backcrossAllium cepa × (A. roylei × A. cepa). Pl. Breeding105: 144–149.

    Google Scholar 

  • Kuriachan, P. &S. S. Beevy. 1992. Occurrence and chromosome number ofCucumis sativus varhardwickii (Royle) Alef. in South India and its bearing on the origin of cultivated cucumber. Euphytica61: 131–133.

    Google Scholar 

  • Kushnir, U. &G. M. Halloran. 1983. Evidence on the origin of the G genome in wheat: Cytology and fertility of aT. timopheevi-like mutant Canad. J. Genet. Cytol.25: 651–661.

    Google Scholar 

  • Ladizinsky, G. 1985. Founder effect in crop-plant evolution Econ. Bot.39: 191–199.

    Google Scholar 

  • — &A. Adler. 1976a. The origin, of the chickpeaCicer arietinum L. Euphytica25: 211–217.

    Google Scholar 

  • ——: 1976b. Genetic relationships among the annual species ofCicer L. Theor. Appl. Genet.48: 196–203.

    Google Scholar 

  • Langer, R. H. M. 1995. Alfalfa, lucerne,Medicago sativa (Leguminosae-Papilionoideae). Pages 283–286in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Langevin, S. A., K. Clay &J. B. Grace. 1990. The incidence and effects of hybridization between cultivated rice and its related weed redrice (Oryza sativa L.). Evolution44: 1000–1008.

    Google Scholar 

  • Lesins, K. A. &I. Lesins. 1979. GenusMedicago (Leguminosae): A taxogenetic study. Junk, The Hague.

    Google Scholar 

  • Letschert, J. P. W. &L. Frese. 1993. Analysis of morphological variation in wild beet (Beta vulgaris L.) from Sicily. Genet. Res. & Crop Evol.40: 15–24.

    Google Scholar 

  • Li, Y., S. Wu &Y. Cao. 1995. Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica83: 79–85.

    Google Scholar 

  • Llaca, V., A. Delgado Salinas &P. Gepts. 1994. Chloroplast DNA as an evolutionary marker in thePhaseolus vulgaris complex. Theor. Appl. Genet.88: 646–652.

    CAS  Google Scholar 

  • Mac Key, J. 1988. A plant breeder's aspect on, taxonomy of cultivated plants. Biol. Zentralbl.107: 369–379.

    Google Scholar 

  • Maesen, L. J. G. &S. Somaatmadja (eds.). 1989. Pulses. Plant Resources of South-East Asia no 1. Pudoc, Wageningen.

    Google Scholar 

  • Mangelsdorf, P. C. 1974. Corn, its origin, evolution and improvement. Belknap Press, Cambridge, MA.

    Google Scholar 

  • Matsubayashi, M. 1991. Phylogenetic relationships in the potato and its related species. Pages 93–118in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: Genetics, breeding, evolution, Part B. Elsevier, Amsterdam.

    Google Scholar 

  • Matsumura, S. 1954. Chromosome analysis of the Dinkel genome in the offspring of a pentaploid wheat hybrid. V. Gigas-plants in the offspring of nullisomic dwarfs and analysis of their additional chromosome pair. Cytologia19: 273–285.

    Google Scholar 

  • McIntyre, C. L., B. Winberg, K. Houchins, R. Appels &B. Baum. 1992. Relationships betweenOryza species (Poaceae) based 5S DNA sequences. Pl. Syst. Evol.183: 249–264.

    CAS  Google Scholar 

  • McLeod, M. J., S. I. Guttman, W. H. Eshbaugh &R. R. Rayle. 1983. An electrophoretic study of evolution inCapsicum (Solanaceae). Evolution37: 562–574.

    CAS  Google Scholar 

  • McNaughton, I. H. 1995. Swedes and rapes,Brassica napus (Cruciferae). Pages 68–75in J. Smartt & N. W. Simmonds (eds.), Evolution of crop, plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Meer, Q. P. van der &J. N. de Vries. 1990. An interspecific cross betweenAllium roylei Stearn andA. cepa L., and its backcross toA. cepa. Euphytica47: 29–31.

    Google Scholar 

  • Micke, A. &B. Donini. 1993. Induced mutations. Pages 52–62in M. Hayward, N. Bosemark & I. Romagosa (eds.), Plant breeding: Principles and prospects. Chapman and Hall, London.

    Google Scholar 

  • Mikolajczak, K. L., F. R. Earle &I. A. Wolff. 1962. Search for new industrial oils. VI. Seed, oils of the genusLesquerella. J. Amer. Oil Chem. Soc.39: 78–80.

    Google Scholar 

  • Muelhbauer, F. J. 1993. Use of wild species as a source of resistance in cool-season food legume crops. Pages 359–372in K. B. Singh & M. C. Saxena (eds.), Breeding for stress tolerance in cool-season food legumes. John Wiley, New York.

    Google Scholar 

  • —,W. J. Kaiser &C. J. Simon. 1994. Potential for wild species in cool season food legume breeding. Euphytica73: 109–114.

    Google Scholar 

  • Ng, N. Q. 1995. Cowpea,Vigna unguiculata (Leguminisae-Papilionoideae). Pages 326–332in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Nieuwhof, M. 1993. Cole crops. Pages 159–171in Traditional crop breeding practices: An historical review to serve as a baseline for assessing the role of modern biotechnology. Organisation for Economic Co-operation, and Development, Paris.

    Google Scholar 

  • Nijs, A. P. M. den &G. E. van Dijk. 1993. Apomixis. Pages 229–245in M. Hayward, N. Bosemark & I. Romagosa (eds.), Plant breeding: Principles and prospects. Chapman and Hall, London.

    Google Scholar 

  • Ogihara, Y. &K. Tsunewaki. 1988. Diversity and evolution of chloroplast DNA inTriticum andAegilops as revealed by restriction fragment analysis. Theor. Appl. Genet.76: 321–332.

    CAS  Google Scholar 

  • Ohlendorf, H. 1960. Untersuchungen über den Samenansatz beiMedicago falcata und Artbastarden (Med. falcata × Med. sativa). Thesis, Technischen Universität, Berlin.

    Google Scholar 

  • Oka, H. I. 1974. Experimental studies on the origin of cultivated rice. Genetics78: 475–486.

    PubMed  Google Scholar 

  • Olmo, H. P. 1995. Grapes,Vitis, Muscadinia (Vitaceae). Pages 485–490in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Oost, E. H. 1986. A proposal for an infraspecific classification ofBrassica rapa L. Pages 309–315in B. T. Styles (ed.), Infraspecific classification of wild and cultivated plants. Clarendon Press, Oxford.

    Google Scholar 

  • — &H. Toxopeus. 1986 Scope and problems of cultivar group formation as exemplified inBrassica rapa L. Acta Hort.182: 117–123.

    Google Scholar 

  • Orozco-Castillo C., K. J. Chalmers, R. Waugh &W. Powell. 1994. Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor. Appl. Genet.87: 934–940.

    CAS  Google Scholar 

  • Palmer, J. D., C. R. Shields, D. B. Cohen &T. J. Orton. 1983. Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor. Appl. Genet.65: 181–189.

    CAS  Google Scholar 

  • —,R. A. Jorgensen &W. F. Thompson. 1985. Chloroplast DNA variation and evolution inPisum: Patterns of change and phylogenetic analysis. Genetics109: 195–213.

    PubMed  CAS  Google Scholar 

  • Peffley, E. B. &P. D. Mangum. 1990. Introgression ofAllium fistulosum L. intoAllium cepa L.: Cytogenetic evidence. Theor. Appl. Genet.79: 113–118.

    Google Scholar 

  • Perl-Treves, E. &E. Galun. 1985. TheCucumis plastome: Physical map, intrageneric variation and phylogenetic relationship. Theor. Appl. Genet.71: 417–429.

    CAS  Google Scholar 

  • Phillips, L. L. 1976. Cotton,Gossypium. Pages 196–200in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • Philouze, J. &L. Hedde. 1993. Tomato. Pages 85–93in Traditional crop breeding practices: An historical review to serve as a baseline for assessing the role of modern biotechnology. Organisation for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Pickersgill, B. 1977. Taxonomy and the origin and evolution of cultivated plants in the New World. Nature268: 591–595.

    Google Scholar 

  • — 1981. Biosystematics of crop-weed complexes. Die Kulturpflanze29: 377–388.

    Google Scholar 

  • — 1991. Cytogenetics and evolution ofCapsicum L. Pages 139–160in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: Genetics, breeding, evolution, Part B. Elsevier, Amsterdam.

    Google Scholar 

  • — 1993. Interspecific hybridization by sexual means. Pages 63–78 in M. Hayward, N. Bosemark & I. Romagosa (eds.), Plant breeding: Principles and prospects. Chapman and Hall, London.

    Google Scholar 

  • —,C. B. Heiser &J. McNeill. 1979. Numerical taxonomic studies on variation and domestication in some species ofCapsicum. Pages 679–700in J. G. Hawkes, R. N. Lester & A. D. Skelding (eds.), The biology and taxonomy of the Solanaceae. Academic Press, London.

    Google Scholar 

  • Prins, T. W. &J. C. Zadoks. 1994. Horizontal gene transfer in plants, a biohazard? Outcome of a literature study. Euphytica76: 133–138.

    Google Scholar 

  • Purseglove, J. W. 1965. The spread of tropical crops. Pages 375–386.in H. G. Baker & G. L. Stebbins (eds.), The genetics of colonizing species. Academic Press, New York.

    Google Scholar 

  • Quiros, C. F., R. Ortega, L. W. D. van Raamsdonk, M. Herrera-Montoya, P. Cisneros, E. Schmidt &S. B. Brush. 1992. Amplification of potato genetic resources in their center of diversity: The role of natural outcrossing and selection by the Andean, farmer. Genet. Res. Crop Evol.39: 107–113.

    Google Scholar 

  • Raamsdonk, L. W. D. van. 1986. The grey area between black and white: The choice between botanical code and cultivated code. Acta Hort.182: 153–158.

    Google Scholar 

  • — 1990. Biosystematics of cultivated plants and their wild relatives. Pages 51–66in S. Kawano (ed.), Biological approaches and evolutionary trends in plants. Academic Press, London.

    Google Scholar 

  • —. 1992. A crossability coefficient for the evalution of crossing experiments. Nordic J. Bot.12: 177–182.

    Google Scholar 

  • —. 1993. Wild and cultivated plants: The parallelism between evolution and domestication. Evol. Trends Pl.7: 73–84.

    Google Scholar 

  • Raamsdonk, L. W. D. van. 1995. The effect of domestication on plant evolution. Acta Bot. Neerl.44(4) (in press).

  • Raamsdonk, L. W. D. van. In press. Crop-weed complexes: The complex relationship between crop plants and their wild relatives. Acta Bot. Neerl.45(2).

  • — &T. de Vries. 1992. Biosystematic studies inAllium sectionCepa. Bot. J. Linn. Soc.109: 131–143.

    Google Scholar 

  • — &J. M. Sandbrink. 1995. Phylogenies inferred from morphological, nuclear DNA, chloroplast DNA and crossability data inAllium sectionCepa are not congruent due to different effects of introgression. Acta Bot. Neerl.44: 85.

    Google Scholar 

  • —,A. P. M. den Nijs &M. C. Jongerius. 1989. Meiotic analysis ofCucumis hybrids and an evolutionary evaluation of the genus Cucumis (Cucurbitaceae). Pl. Syst. Evol.163: 133–146.

    Google Scholar 

  • —,J. P. van Eijk &W. Eikelboom. 1995. The analysis of crossability between species ofTulipa subgenusTulipa. Bot. J. Linn. Soc.117: 147–158.

    Google Scholar 

  • —,W. A. Wietsma &J. N. de Vries. 1992. Crossing experiments inAllium sectionCepa. Bot. J. Linn. Soc.109: 293–303.

    Google Scholar 

  • Ramming, D. W. &V. Cociu. 1991. Plums (Prunus). Pages 235–287in J. N. Moore & J. R. Ballington (eds.), Genetic resources of temperature fruit and nut crops. International Society for Horticultural Science, Wageningen.

    Google Scholar 

  • Reed, S. M. 1991. Cytogenetic evolution and aneuploidy inNicotiana. Pages 483–506in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: Genetics, breeding, evolution, Part B. Elsevier, Amsterdam.

    Google Scholar 

  • Regal, P. J. 1994. Studying and and managing the risk of cross-fertilization between transgenic crops and wild relatives. Molec. Ecol.3: 5–13.

    Google Scholar 

  • Renard, M., J. H. Louter &L. H. Duke. 1993. Oilseed rape. Pages 147–157in Traditional crop breeding practices: An historical review to serve as a baseline for assessing the role of modern biotechnology. Organisation for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Rensch, B. 1959. Evolution above the species level. Columbia University Press, New York.

    Google Scholar 

  • Rick, C. M. 1988. Evolution of mating systems in cultivated plants, Pages 133–148in L. D. Gottlieb & S. K. Jain (eds.), Plant evolutionary biology. Chapman and Hall, London.

    Google Scholar 

  • Rieseberg, L. H. &L. Brouillet. 1994. Are many plant species paraphyletic? Taxon43: 21–34.

    Google Scholar 

  • Riley, R., J. Unrau, &V. Chapman. 1958. Evidence on the origin of the B genome of wheat. J. Hered.49: 91–98.

    Google Scholar 

  • Roach, B. T. 1995. Sugar canes,Saccharum (Gramineae-Andropogonae). Pages 160–166in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Rollins, R. C., 1954. Interspecific hybridization and its role in plant evolution. Proc. Intl. Bot. Congress Paris, section9: 172–180.

    Google Scholar 

  • — 1955. The auriculate-leaved species ofLesquerella (Cruciferae) Rhodora57: 241–264.

    Google Scholar 

  • — 1957. Interspecific hybridization inLesquerella. Contr. Gray Herb.181: 1–40.

    Google Scholar 

  • Roseberg, J. 1993. Cultural practices forLesquerella production. J. Amer. Oil Chem. Soc.70: 1241–1244.

    Google Scholar 

  • Schoonhoven, A. van &O. Voysest (eds.). 1991. Common beans: Research for crop improvement. CAB International, Wallingford, UK; CIAT, Cali.

    Google Scholar 

  • Schwanitz, F. 1967. Die Evolution der Kulturpflanzen. Bayerischer Landwirtschaftsverlag, Munich.

    Google Scholar 

  • Simmonds, N. W. (ed.). 1976a. Evolution of crop plants. Longman, New York.

    Google Scholar 

  • — 1976b. Potatoes,Solanum tuberosum. Pages 279–283in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • — 1976c. Bananas,Musa. Pages 211–215in N. W. Simmonds (ed.), Evolution of crop plants. Longman, New York.

    Google Scholar 

  • — 1979. Principles of crop improvement. Longman, New York.

    Google Scholar 

  • — 1995a. Potatoes,Solanum tuberosum (Solanaceae). Pages 466–471in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • — 1995b. Bananas,Musa (Musaceae). Pages 370–375in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Singh, A. K., S. Gurtu &R. Jambunathan. 1994. Phylogenetic relationships in the genusArachis based on seed protein profiles. Euphytica74: 219–225.

    Google Scholar 

  • Singh, R. J. &T. Hymowitz. 1985a. The genomic relationships among six wild perennial species of the genusGlycine subgenusGlycine Willd. Theor. Appl. Genet.71: 221–230.

    Google Scholar 

  • —&—. 1985b. Intra- and interspecific hybridization in the genusGlycine, subgenusGlycine Willd: Chromosome pairing and genome relationships. Z. Pflanzenzücht.95: 289–310.

    Google Scholar 

  • —,K. P. Kollipara &T. Hymowitz. 1987. Intersubgeneric hybridization of soybeans with a wild perennial species,Glycine cladestina Wendl. Theor. Appl. Genet.74: 391–396.

    Google Scholar 

  • —,—&—. 1988. Further data on the genomic relationships among wild perennial species (2n=40) of the genusGlycine Willd Genome30: 166–176.

    Google Scholar 

  • Small, E. 1978. A numerical taxonomic analysis of theDaucus carota complex. Canad. J. Bot.56: 248–276.

    Google Scholar 

  • — 1984. Hybridization in the domesticated weed-wild complex. Pages 195–210in W. F. Grant (ed.), Plant biosystematics. Academic Press, Toronto.

    Google Scholar 

  • Smartt, J. 1984. Gene pools in grain legumes. Econ. Bot.38: 24–35.

    Google Scholar 

  • — 1990. Grain legumes: Evolution and genetic resources. Cambridge University Press, Cambridge.

    Google Scholar 

  • — &N. W. Simmonds (eds.). 1995. Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • Smith, B. D. 1995. The emergence of agriculture. Scientific American Library, New York.

    Google Scholar 

  • Soltis, D. E., P. S. Soltis &B. G. Milligan. 1992. Intraspecific chloroplast DNA variation: Systematic and phylogenetic implications. Pages 117–119in P. S. Soltis, D. E. Soltis & J. J. Doyle (eds.), Molecular systematics of plants. Chapman and Hall, New York.

    Google Scholar 

  • Song, K. M., T. C. Osborn &P. H. Williams. 1988.Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor. Appl. Genet.75: 784–794.

    CAS  Google Scholar 

  • —,—&—. 1990.Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships inBrassica and related genera and the origin ofB. oleracea andB. rapa (syn.campestris). Theor. Appl. Genet.79: 497–506.

    Google Scholar 

  • Stace, C. A. (ed.). 1975. Hybridization and the flora of the British Isles. Academic Press, London.

    Google Scholar 

  • Stuessy, T. F. 1990. Plant taxonomy. Columbia University Press, New York.

    Google Scholar 

  • Terlizzi, P. Di, M. Frediani, R. Cremonini &D. Pignone. 1993. CHy banding patterns and chromatin organization inAegilops andTriticum species (Poaceae). Pl. Syst. Evol.184: 1–10.

    Google Scholar 

  • Till-Bottraud, I., X. Reboud, P. Brabant, M. Lefranc, B. Rherissi, F. Vedel &H. Darmency. 1992. Outcrossing and hybridization in wild and cultivated foxtail millets: Consequences for the release of transgenic crops. Theor. Appl. Genet.83: 940–946.

    Google Scholar 

  • Timmons, A. M., E. T. O'Brien, Y. M. Charters, S. J. Dubbels & M. J. Wilkinson. 1994. Assessing the risk of wind pollination from transgenic fields ofBrassica napus ssp.oleifera. Page 94in Proceedings of the Eucarpia conference “The methodology of plant genetic manipulation: criteria for decision making,” 11–14 September 1994.

  • Tuyl, J. M. 1993. Survey research on mitotic and meiotic polyploidization at CPRO-DLO. Lily Yearbook (1990): 10–18.

    Google Scholar 

  • —,T. P. Straathof, R. J. Bino &A. A. M. Kwakkenbos. 1988. Effect of three pollination methods on embryo development and seedset in intra- and interspecific crosses betweenLilium species. Sexual Pl. Reprod.1: 119–123.

    Google Scholar 

  • —,M. P. van Diën, M. G. M. van Creij, T. C. M. van Kleinwee, J. Franken &R. J. Bino. 1991. Application of in vitro pollination ovary culture, ovule culture and embryo rescue for overcoming incongruity carriers in interspecificLilium crosses. Pl. Sci.74: 115–126.

    Google Scholar 

  • U, N. 1935. Genome analysis ofBrassica with special reference to experimental formation ofB. napus. Jap. J. Bot.7: 389–452.

    Google Scholar 

  • Valk, P. van der, S. E. de Vries, J. T. Everink, F. Verstappen &J. N. de Vries. 1991. Pre- and post-fertilization barriers to backcrossing the interspecific hybrid betweenAllium fistulosum L. andA. cepa L. withA. cepa. Euphytica53: 201–209.

    Google Scholar 

  • Voytas, D. F. 1992.Arabidopsis and cotton (Gossypium) as models for studying copia-like retrotransposon evolution. Genetica86: 13–20.

    Google Scholar 

  • Vries, I. M. de. 1990. Crossing experiments of lettuce cultivars and species (Lactuca sect.Lactuca, Compositae). Pl. Syst. Evol.171: 233–248.

    Google Scholar 

  • — &L. W. D. van Raamsdonk. 1994. Numerical morphological analysis of lettuce cultivars and species (Lactuca sect.Lactuca, Asteraceae). Pl. Syst. Evol.193: 125–141.

    Google Scholar 

  • Vries, J. N. de, W. A. Wietsma &T. de Vries. 1992. Introgression of leaf blight resistance fromAllium roylei Stearn into onion (A. cepa L.). Euphytica62: 127–133.

    Google Scholar 

  • Warnock, S. J. 1988. A review of taxonomy and phylogeny of the genusLycopersicon. HortScience23: 669–673.

    Google Scholar 

  • Warwick, S. I. &L. D. Black. 1991. Molecular systems ofBrassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor. Appl. Genet.82: 81–92.

    CAS  Google Scholar 

  • Wendel, J. F. 1989. New World tetraploid cottons contain Old World cytoplasm. Proc. Nat. Acad. Sci.86: 4132–4136.

    PubMed  CAS  Google Scholar 

  • — 1995. Cotton,Gossypium (Malvaceae). Pages 358–366in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • — &V. A. Albert. 1992. Phylogenetics of the cotton genus (Gossypium): Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst. Bot.17: 115–143.

    Google Scholar 

  • Wet, J. M. J. de. 1978. Systematics and evolution ofSorghum sectSorghum (Gramineae). Amer. J. Bot.65: 477–484.

    Google Scholar 

  • —. 1981. Species concepts and systematics of domesticated cereals. Die Kulturpflanze29: 177–198.

    Google Scholar 

  • —. 1995a. Pearl millet,Pennisetum glaucum (Gramineae-Paniceae). Pages 156–159in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • —. 1995b. Foxtail millet,Setaria italica (Gramineae-Paniceae). Pages 170–172in J. Smartt & N. W. Simmonds (eds.), Evolution of crop plants. Ed. 2. Longman Scientific & Technical, Harlow.

    Google Scholar 

  • —,L. L. Oestry-Stid &J. L. Cubero. 1979. Origins and evolution of foxtail millets. J. Agric. Trop. Bot. Appl.26: 53–63.

    Google Scholar 

  • Whalen, M. D. 1991. Taxonomy ofSaccharum (Poaceae). Baileya23: 109–125.

    Google Scholar 

  • Wijnheimer, E. H. M., W. A. Brandenburg &S. J. Ter Borg. 1989. Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica40: 147–154.

    Google Scholar 

  • Wilson, H. &J. Manhart. 1993. Crop/weed gene flow:Chenopodium quinoa Willd. andC. berlandieri Moq. Theor. Appl. Genet.86: 642–648.

    Google Scholar 

  • Zeven, A. C. &J. M. J. de Wet. 1982. Dictionary of cultivated plants and their regions of diversities. PUDOC, Wageningen.

    Google Scholar 

  • Zohary, D. 1969. The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. Pages 47–66in P. J. Ucko & G. W. Dimbleby (eds.), The domestication and exploitation of plants and animals. Gerlad Duckworth, London.

    Google Scholar 

  • — 1972. The wild progenitor and the place of origin of the cultivated lentil:Lens culinaris. Econ. Bot.26: 326–332.

    Google Scholar 

  • — 1984. Modes of evolution in plants under domestication. Pages 579–586in W. F. Grant (ed.), Plant biosystematics. Academic Press, Toronto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Raamsdonk, L.W.D. The cytological and genetical mechanisms of plant domestication exemplified by four crop models. Bot. Rev 61, 367–399 (1995). https://doi.org/10.1007/BF02912623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912623

Keywords

Navigation