Skip to main content
Log in

Differential effects of a 5-HT2 receptor blocker on alcohol intake in rats selectively bred for high and low catecholamine responses to stress

  • Published:
Integrative Physiological and Behavioral Science Aims and scope Submit manuscript

Abstract

The effect of the selective 5-HT2 receptor blocker ritanserin on alcohol consumption was investigated in two strains of rats selectively bred for high and low catecholamine responses to stress. Rats were forced to drink a 5% alcohol solution for 10 days. For the subsequent six days, animals were injected subcutaneously with 2.5 mg/kg/2 ml ritanserin or vehicle only, and both a 5% solution of alcohol and water were presented to the animals. Ritanserin affected neither water nor total fluid intake. Furthermore, no effect of ritanserin on alcohol consumption could be demonstrated in high-responding rats, whereas in low-responding rats a very pronounced ritanserin-induced reduction in alcohol intake was observed. Results are discussed in terms of mediating effects of serotonergic neurons on mesolimbic dopaminergic reward systems related to drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awouters, F., Niemegeers, C.J.E., Megens, A.A.H.P., Meert, T.F. & Janssen, P.A.J. (1988). The pharmacological profile of ritanserin, a very specific central serotonin-S2 antagonist.Drug Development Research, 15, 61–73.

    Article  Google Scholar 

  • Backus, L.I., Sharp, T. & Grahame-Smith, D.G. (1989 March 29 – April 1.) Behavioural evidence for a functional interaction between central 5-HT2 and 5-HT1A receptors.International symposium on serotonin from cell biology to pharmacology and therapeutics, Abstract book, 40, Florence.

  • Bozarth, M.A. (1987). Ventral tegmental reward system. In J. Engel, L. Oreland, D.H. Ingvar, B. Pernow, S. Rössner, & L.Å. Pellborn (Ed.),Brain reward systems and abuse (pp. 1–33). New York: Raven Press.

    Google Scholar 

  • Bozarth, M.A. & Wise, R.A. (1981). Heroin reward is dependent on a dopaminergic substrate.Life Sciences, 29, 1881–1886.

    Article  PubMed  Google Scholar 

  • Carboni, E., Acquas, E., Frau, R. & DiChiara, G. (1989). Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release.European Journal of Pharmacology, 164, 515–519.

    Article  PubMed  Google Scholar 

  • Casteneda, R. & Cushman, P. (1989). Alcohol withdrawal: a review of clinical management.Journal of Clinical Psychiatry, 50, 278–284.

    Google Scholar 

  • Clemmesen, L. & Hemmingsen, R. (1984). Physical dependence on ethanol during multiple intoxication and withdrawal episodes in the rat: Evidence of a potentiation.Acta Physiologica et Toxicologica, 55, 345–350.

    Article  Google Scholar 

  • Engel, J. & Carlsson, A. (1977). Catecholamines in behavior. In W.S. Essman & L. Valzelli (Eds.),Current developments in psychopharmacology 4, 1–32. New York: Spectrum Publications.

    Google Scholar 

  • Ettenberg, A., Pettit, H.O., Bloom, F.E. & Koob, G.F. (1982). Heroine, and cocaine self-administration in rats: mediation by separate neural systems.Psychopharmacology, 78, 204–209.

    Article  PubMed  Google Scholar 

  • Fibiger, H.C. & Phillips, A.G. (1986). Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems. In American Physiological Society (Ed.),Handbook of physiology. Section 1. The nervous system. Vol.IV. Intrinsic regulatory systems of the brain (pp. 647–675). Bethesda, Maryland: American Physiological Society.

    Google Scholar 

  • Fibiger, H.C. & Phillips, A.G. (1987). Role of catecholamine transmitters in brain reward systems: Implications for the neurobiology of affect. In J. Engel, L. Oreland, D.H. Ingvar, B. Pernow, S. Rössner & L.Å. Pellborn (Eds.)Brain reward systems and abuse (pp. 61–74). New York: Raven Press.

    Google Scholar 

  • Geller, I. (1973). Effects of para-chlorophenylalanine and 5-hydroxytryptophan on alcohol intake in the rat.Pharmacology, Biochemistry and Behavior, 1, 361–365.

    Article  Google Scholar 

  • Gessa, G.L., Muntoni, F., Collu, M., Vargiu, L. & Mereu, G. (1985). Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area.Brain Research, 348, 201–203.

    Article  PubMed  Google Scholar 

  • Gongwer, M.A., Murphy, J.M., McBride, W.J., Lumeng, L. & Li, T.-K. (1989). Regional brain contents of serotonin, dopamine and their metabolites in the selectively bred high- and low-alcohol drinking lines of rats.Alcohol, 6, 317–320.

    Article  PubMed  Google Scholar 

  • Goodwin, G.M. & Green, A.R. (1985). A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors.British Journal of Pharmacology, 84, 743–753.

    PubMed  Google Scholar 

  • Gysling, K. & Wang, R.Y. (1983). Morphine-induced activation of A10-dopamine neurons in the rat.Brain Research, 227, 119–127.

    Article  Google Scholar 

  • Heikkila, R.E., Orlansky, H. & Cohen, G. (1975). Studies on the distinction between uptake inhibition and release of [3H]-dopamine in rat brain tissue slices.Biochemical Pharmacology, 24, 847–852.

    Article  PubMed  Google Scholar 

  • Idzikowski, C., Mills, D.W. & Glennard, R. (1986). 5-hydroxytryptamine-2 antagonist increases human slow wave sleep.Brain Research, 378, 164–168.

    Article  PubMed  Google Scholar 

  • Imperato, A. & DiChiara, G. (1986). Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol.Journal of Pharmacology and Experimental Therapeutics, 239, 219–228.

    PubMed  Google Scholar 

  • Johanson, C.-E. & Fischman, M.W. (1989). The pharmacology of cocaine related to its abuse.Pharmacological Reviews, 41, 3–52.

    PubMed  Google Scholar 

  • Khatib, S.A., Murphy, J.M. & McBride, W.J. (1988). Biochemical evidence for activation of specific monoamine pathways by ethanol.Alcohol, 5, 295–299.

    Article  PubMed  Google Scholar 

  • Koob, G.F., Vaccarino, F., Amalric, M. & Bloom, F.E. (1987). Positive reinforcement properties of drugs: Search for neural substrates. In J. Engel, L. Oreland, D.H. Ingvar, B. Pernow, S. Rössner, L.Å. Pellborn (Ed.),Brain reward systems and abuse (pp. 35–50). New York: Raven Press.

    Google Scholar 

  • Lakoski, J.M. & Aghajanian, G.K. (1985). Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus.Neuropharmacology, 24, 265–273.

    Article  PubMed  Google Scholar 

  • Lal, H. & Emmet-Oglesby, M.W. (1983). Behavioral analogues of anxiety. Animal models.Neuropharmacology, 22, 1423–1441.

    Article  PubMed  Google Scholar 

  • Lawrin, M.O., Naranjo, C.A. & Sellers, E.M. (1985). Enhanced serotonergic neurotransmission decreases ethanol consumption, consistent results with a serotonin agonist.Proceedings of the Canadian Federated Biological Society, 28, 81.

    Google Scholar 

  • Leysen, J.E. (1990). The 5-HT2 receptors: What do they do? Possible roles in affective disorders.Clinical Neuropharmacology, 13, (2), 230–231.

    Google Scholar 

  • Lyness, W.H., Friedle, N.M. & Moore, K.E. (1979). Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administration.Pharmacology, Biochemistry and Behavior, 11, 553–556.

    Article  Google Scholar 

  • McBride, W.J., Murphy, J.M., Lumeng, L. & Li, T.-K. (1990). Serotonin, dopamine and GABA involvement in alcohol drinking of selectively bred rats.Alcohol, 7, 199–205.

    Article  PubMed  Google Scholar 

  • Meert, T.F., Awouters, F. & Melis, W.J.C. (1990). Unpublished clinical research report. Ritanserin reduces alcohol preference and alcohol intake in rats given the choice between 3% alcohol and water. Beerse, Belgium: Janssen Research Foundation.

    Google Scholar 

  • Meert, T.F., De Haes, P.L.A.J., Vermote, P.C.M. & Janssen, P.A.J. (1990). Pharmacological validation of ritanserin and risperidone in the drug discrimination test procedure in the rat.Drug Development Research, 19, 353–373.

    Article  Google Scholar 

  • Meert, T.F. & Janssen, P.A.J. (1989). Psychopharmacology of ritanserin: comparison with chlordiazepoxide.Drug Development Research, 18, 119–144.

    Article  Google Scholar 

  • Meert, T.F., Melis, W.J.C., Huysmans, H.A.M.E. & Verbist, P.A.M. (1990). Ritanserin reduces cocaine preference and cocaine intake in rats given the choice between 0.1 mg/ml cocaine and water? (Unpublished preclinical research report.) Beerse, Belgium: Janssen Research Foundation.

    Google Scholar 

  • Murphy, J.M., McBride, W.J., Lumeng, L. & Li, T.-K. (1982). Regional brain levels of monoamines in alcohol-preferring and -nonpreferring lines of rats.Pharmacology, Biochemistry and Behavior, 16, 145–149.

    Article  Google Scholar 

  • Murphy, J.M., McBride, W.J., Lumeng, L. & Li, T.-K. (1987). Contents of monoamines in forebrain regions of alcohol-preferring (P) and -nonpreffering (NP) lines of rats.Pharmacology, Biochemistry and Behavior, 26, 389–392.

    Article  Google Scholar 

  • Murphy, J.M., McBride, W.J., Lumeng, L. & Li, L.-T. (1988). Effects of serotonin and dopamine agents on ethanol intake of alcohol preferring P rats.Alcoholism: Clinical and Experimental Research, 12, 306.

    Google Scholar 

  • Naranjo, C.A., Sellers, E.M. & Lawrin, M.O. (1986). Modulation of ethanol intake by serotonin uptake inhibitors.Journal of Clinical Psychiatry, 47, 16–22.

    PubMed  Google Scholar 

  • Naranjo, C.A., Sullivan, J.T., Lawrin, M.O. & Sellers, E.M. (1987). Strategies for the identification and testing of new pharmacological modulators of ethanol consumption. In J. Engel, L. Oreland, D.H. Ingvar, B. Pernow, S. Rössner & L.Å. Pellborn (Eds.),Brain reward systems and abuse (pp. 129–145). New York: Raven Press.

    Google Scholar 

  • Rammsayer, T. & Netter, P. (1988). Effects of changes in brain 5-HT activity on indicators of cortical arousal.International Clinical Psychopharmacology, 3, 231–237.

    Article  PubMed  Google Scholar 

  • Roberts, D.C.S. & Koob, G.F. (1982). Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the central tegmental area in rats.Pharmacology, Biochemistry and Behavior, 17, 901–904.

    Article  Google Scholar 

  • Roberts, D.C.S., Koob, G.F., Klonoff, P. & Fibiger, H.C. (1980). Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens.Pharmacology, Biochemistry and Behavior, 12, 781–787.

    Article  Google Scholar 

  • Rockman, G.E., Amit, Z., Carr, G., Brown, Z.W. & Ogren, S.O. (1979). Attenuation of ethanol intake by 5-hydroxytryptamine uptake blockade in laboratory rats. I. Involvement of brain 5-hydroxytryptamine in the mediation of positive reinforcing properties of ethanol.Archives Internationales de Pharmacodynamie, 241, 245–259.

    Google Scholar 

  • Seevers, M.H. (1968). Psychopharmacological elements of drug dependence.Journal of the American Medical Association, 206, 1263–1266.

    Article  PubMed  Google Scholar 

  • Sellers, E.M., Sobell, M.B. & Higgins, G.A. (1990). Role of 5-HT receptors in addictive disorders.Clinical Neuropharmacology, 13, (2), 234–235.

    Google Scholar 

  • Taylor, J., Weyers, P., Harris, N. & Vogel, W.H. (1989). The plasma catecholamine stress response is characteristic for a given animal over a one-year period.Physiology and Behavior, 46, 853–856.

    Article  PubMed  Google Scholar 

  • Tyers, M.B. (1990). Serotonin receptors.Clinical Neuropharmacology, 13, (2), 226–227.

    Google Scholar 

  • Ugedo, L., Grenhoff, J. & Svensson, T.H. (1989). Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition.Psychopharmacology, 98, 45–50.

    Article  PubMed  Google Scholar 

  • Watling, K.J. (1989). 5-HT3 receptor agonists and antagonists.Neurotransmissions, 5, 1–4.

    Google Scholar 

  • Wise, R.A. (1983). Brain neuronal systems mediating reward processes. In J.E. Smith & J.D. Lane (Eds.),Neurobiology of opiate reward processes. (pp. 405–437). Amsterdam: Elsevier North Holland Biomedical Press.

    Google Scholar 

  • Wong, D.T., Lumeng, L., Threlkeld, P.G., Reid, L.R. & Li, T.-K. (1988). Serotonergic and adrenergic receptors in alcohol-preferring and nonpreferring rats.Journal of Neural Transmission, 71, 207–218.

    Article  PubMed  Google Scholar 

  • Wood, D.M. & Lal, H. (1987). Anxiogenic properties of cocaine withdrawal.Life Sciences, 41, 1431–1436.

    Article  PubMed  Google Scholar 

  • Zarbik, J.E., Liao, S.-S., Jeffreys, M. & Maickel, R.P. (1978). The effect of DL-5-hydroxytryptophan on ethanol consumption by rats.Research Communications in Chemical Pathology and Pharmacology, 20, 69–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rammsayer, T., Vogel, W.H. Differential effects of a 5-HT2 receptor blocker on alcohol intake in rats selectively bred for high and low catecholamine responses to stress. Integr. psych. behav. 26, 189–199 (1991). https://doi.org/10.1007/BF02912510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912510

Keywords

Navigation