Science in China Series D: Earth Sciences

, Volume 44, Supplement 1, pp 146–154 | Cite as

Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit, Yunnan, SW China

  • Wang Jianghai 
  • Qi Liang 
  • Yin An 
  • Xie Guanghong 


Widely-distributed lamprophyres in the Laowangzhai gold deposit were associated closely with gold ores. Phlogopite40Ar/39Ar dating suggests that the emplacement age of lamprophyric magma ranges from (30.8±0.4) to (34.3±0.2) Ma, and gold mineralization took place at (26.4±0.2) Ma. PGE geochemical tracing indicates that gold in the gold deposit did not come from the primitive lamprophyric magma. The tempo-spatial paragenesis between lamprophyres and mesothermal gold deposits along the Jinsha-Red River belt may be attributed to the fact that they formed in the same tectonic setting.


thermochronology PGE geochemistry lamprophyre Laowangzhai gold deposit Yunnan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    He, W. J., Characteristics of the lamprophyres and their relations to gold mineralization in the Zhenyuan gold deposit field, Yunnan Geology (in Chinese), 1993, 12(2): 148–158.Google Scholar
  2. 2.
    Huang, Z. L., Liu, C. Q., Zhu, C. M., The origin of lamprophyres in the Laowangzhai gold filed, Yunnan Province and Their Relations with Gold Mineralization (in Chinese), Beijing: Geological Publishing House, 1999, 1–251.Google Scholar
  3. 3.
    Bi, X. W., Hu, R. Z., He, M. Y., ESR ages and their geologic significance in the Ailao Shan gold deposit belt, Chinese Science Bulletin, 1996, 41(14): 1301–1303.Google Scholar
  4. 4.
    Hu, R. Z., Bi, X. W., He, M. Y., Mineralizer constraining the gold mineralization in the Ailao Shan gold-deposit belt, Science in China, Series D, 1998, 28(Suppl.): 24–30.Google Scholar
  5. 5.
    Zhang, Z. L., Zhang, S. F., Yuan, H. H. et al., An isotope geology and origin study of the Jinchang gold deposit, Mojiang, Yunnan, Journal of Chengdu College Geology (in Chinese), 1987, 14(4): 29–41.Google Scholar
  6. 6.
    Geyh, M. A., Schleicher, H., Absolute Age Determination: Physical and Chemical Dating Methods and Their Application, Berlin: Springer-Verlag, 1990, 272–282.Google Scholar
  7. 7.
    Huang, Z. L., Zhu, C. M., Xiao, H. Y. et al., Can a lamprophyric magma carry gold up? The evidence from a high-T and high-P experiment. Chinese Science Bulletin, 1999, 44(12): 1331–1334.Google Scholar
  8. 8.
    Harrison, T. M., Chen, W. J., Leloup, P. H., et al., An early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics, Journal of Geophysical Research (in Chinese), 1992, 97: 7159–7182.CrossRefGoogle Scholar
  9. 9.
    Gregoire, D. C., Determination of platinum, palladium, ruthenium and iridium geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporization. Journal of Analytical Atomic Spectrometry, 1988, 3: 309–314.CrossRefGoogle Scholar
  10. 10.
    Qi, L., Deng, H. L., Hu, J., Determination of precious metal elements in geological samples by isotope dilute inductively coupled plasma mass spectrometry, Yunnan Chemical Engineering (in Chinese), 1998, (Suppl.): 94–96.Google Scholar
  11. 11.
    Liu, Y., Liu, H. C., Li, X. H., Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS, Geochimica, 1996, 25(6): 552–558.Google Scholar
  12. 12.
    Naldrett, A. J., Duke, J. M., Platinum metals in magmatic sulfide ores, Science, 1980, 208: 1417–1424.CrossRefGoogle Scholar
  13. 13.
    Sun, S. S., Chemical composition and origin of the earth’s primitive mantle, Geochimica et Cosmochimica Acta, 1982, 46: 176–192.CrossRefGoogle Scholar
  14. 14.
    Brugmann, G. E., Arndt, N. T., Hoffmann, A. W. et al., Nobel metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia, Geochimica et Cosmochimica Acta, 1987, 51: 2159–2169.CrossRefGoogle Scholar
  15. 15.
    Rock, N. S. M., Groves, D. I., Can lamprophyres resolve the genetic controversy over mesothermal gold deposit? Geology, 1988, 16: 538–541.CrossRefGoogle Scholar
  16. 16.
    Rock, N. S. M., Groves, D. I., Perring, C. S. et al., Gold, lamprophyre and porphyries: what does their association mean? Economic Geology, 1989, 6: 609–625.Google Scholar
  17. 17.
    Wyman, D. A., Kerrich, R., Archean shoshonitic lamprophyres associated with superior province gold deposits: Distribution, tectonic setting, noble metal abundances, and significance for gold mineralization, Economic Geology, 1989, 6: 651–667.Google Scholar
  18. 18.
    Sun, S. S., Wallace, D. A., Hoatson, D. M. et al., Use of geochemistry as a guide to platinum group element potential of mafic-ultramafic rocks: examples from the west Pilbara and Halls Creek mobile zone, western Australia, Precambrian Research, 1991, 50: 1–35.CrossRefGoogle Scholar
  19. 19.
    Wang, J. H., Yin, A., Harrison, T. M. et al., A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone, Earth and Planetary Science Letters, 2001, 188: 123–133.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Wang Jianghai 
    • 1
  • Qi Liang 
    • 2
  • Yin An 
    • 3
  • Xie Guanghong 
    • 1
  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.Department of Earth & Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations