Abstract
Microgravity environments may provide perspective platforms for studying the phenomenon of thermal diffusion. It is, however, noted that the residual microaccelerations (g-jitters) in space laboratories may affect the accuracy of experiments due to convections that they induce. An appropriate interpretation of experimental results from the Space relies on a thorough understanding of the influence of g-jitters on thermal diffusion. In this paper, we have modelled the thermal diffusion process under different microgravity environments using measured g-jitter data onboard the International Space Station (ISS) and FOTON-12. The fluid system consists of a rectangular cavity filled with a ternary mixture of methane, n-butane and dodecane (50∶20∶30 mol%). A lateral heating condition is applied. Various case scenarios have been studied with respect to different locations in the ISS and FOTON; and a detailed analysis is made in comparison with the ideal zero gravity (0-g) scenario. It is found that the diffusion process is only slightly affected by the g-jitters in both platforms. Recommendations are made according to the findings from this study for the improvement of the accuracy of diffusion experiments in Space.
Similar content being viewed by others
References
Haase, R.: Thermodynamics of Irreversible Processes. Addison Wesley, (1969).
Kempers, L.J.T.M.: A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. Journal of Chemical Physics, vol. 115, p. 6330 (2001).
Shukla K., Firoozabadi A.: A new model of thermal diffusion coefficients in binary hydrocarbon mixtures. Ind. Engrg. Chem. Res., vol. 37, p. 3331 (1998).
Ghorayeb, K., Firoozabadi, A.: Molecular, pressure, and thermal diffusion in nonideal multicomponent mixtures. AIChE Journal: Fluid Mechanics and Transport Phenomenon, vol. 46, no.5, p. 883 (2000).
Firoozabadi, A., Ghorayeb, K., and Shukla, K.: Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE Journal: Fluid Mechanics and Transport Phenomenon, vol. 46, no.5, p. 892 (2000).
Pan S., Jiang C., Yan Y., Kawaji M., Saghir M.Z.: Theoretical prediction of thermal diffusion in water-methanol, water-ethanol and water-isopropanol mixtures using PC-SAFT equation of state. Journal of Nonequilibrium Thermodynamics, vol. 31, no. 1, p. 47 (2006).
Costeséque P., Gaillard S., Gachet Y., Jamet Ph.: Determination of the apparent negative Soret coefficient of water-10% alcohol solutions by experimental and numerical methods in packed cells. Philosophical Magazine, vol. 83, no. 17–18, p. 2039 (2003).
Dutrieux, J.F., Platten J.K., Chavepeyer G., Bou-Ali M.M.: On the Measurement of Positive Soret Coefficients. J. Phys. Chem. B, vol. 106, no. 23, p. 6104 (2002).
Kita R., Wiegand S., Luettmer-Strathmann J.: Sign change of the Soret coefficient of poly (ethylene oxide) in water/ethanol mixtures observed by thermal diffusion forced Rayleigh scattering. J. Chem. Phys., vol. 121, no. 8, p. 3874 (2004).
Bert, J., Dupuy-Philon, J.: Microgravity measurement of the Soret effect in a molten salts mixture. J. Physics: Condensed Matter, vol. 9, no. 50, p. 11045 (1997)
Garandet, J.P., Praizey, J.P., Van Vaerenbergh, S., Alboussiere, T.: On the problem of natural convection in liquid phase thermotransport coefficients measurements, Physics of Fluids, vol. 9, no.3, p. 510 (1997)
van Vaerenbergh S., Legros J.C.: Soret coefficients of organic solutions measured in the microgravity SCM experiment and by the flow and Bénard cells, J. Phys. Chem. B, vol. 102, no. 22, p. 4426 (1998)
Jules, K., Hrovat, K., Kelly, E.: International Space Station Increment-2. Quick Look Report, NASA, Glenn Research Center, Cleveland, Ohio (2001)
Abrashkin V.I., Volkov M.V., Egorov A.V., Zaitsev A.S., Kazakova A.E., Sazonov V.V.: An analysis of the low-frequency component in measurements of angular velocity and microacceleration onboard the Foton-12 satellite, Cosmic Research, vol. 41, no.6, p. 593 (2003).
Monti R., Savino R.: A new approach to g-level tolerability for fluid and material science experiments. Acta Astronautica, vol. 37, p. 313, (1995).
Monti R., Savino R.: Influence of g-jitter on fluid physics experimentation onboard the ISS, ESA Symposium Proceedings on Space Station Utilisation, Darmstadt, Germany, September 30–October 2 (1996).
Savino R., Monti R.: Convection induced by residual-g and g-jitters in diffusion experiments, Int. J. Mass Heat Transfer, vol. 42, p. 111 (1999).
Monti R., Savino R., Lappa M.: On the convective disturbances induced by g-jitters on the space station, Acta Astronautica, vol. 48, no. 5–12, p. 603 (2001).
Monti R., Patterna D., Savino R.: Counter-measures to migrate residual-g effects on microgravity experiments on the space station. Acta Astronautica, vol. 50, no. 4, p. 209 (2002).
Savino R.: Residual-g and g-jitter effects on the measurement of thermophysical properties in microgravity, Advanced Space Research, vol. 29, no.4, p. 559 (2002).
Savino R., Lappa M.: Assessment of thermovibrational theory: application to g-jitter on the Space Station. J. Spacecraft and Rockets, vol. 40, no. 2, p. 201 (2003).
Chacha M., Saghir M.Z., Viviani A.: 3D Numerical Simulations of Thermodiffusion Experiment for a Ternary Mixture On-Board Foton. Microgravity—science and technology, XVII-2, p. 31 (2005).
Chacha M., Faruque D., Saghir M.Z., Legros J.C.: Solutal thermodiffusion in binary mixture in the presence of g-jitter. Int. J. Thermal Science. vol. 41, no. 10, p. 899 (2002).
Chacha M., Saghir M.Z.: Solutal-thermo-diffusion convection in a vibrating rectangular cavity. Int. J. Thermal Sciences, vol. 44, p. 1 (2005).
Yan Y., Shevtsova V., Saghir, M.Z.: Numerical study of low frequency g-jitter effect on thermal diffusion. Fluid Dynamics and Materials Processing, vol. 1, no. 4, p. 315 (2005).
Shevtsova V., Melnikov D., Legros J.C., Yan, Y., Saghir Z., Lyubimova T., Sedelnikov G., Roux B.: Influence of vibrations on thermodiffusion in binary mixture. Benchmark of numerical solutions, Physics of Fluids, accepted (2006)
Yan Y., Adimoolam C., Saghir M.Z.: Double diffusion convection under sinusoidal modulations of low frequency vibrations, 57th International Astronautical Congress, Valencia, Spain, October 2–6, 2006
Shu Y., Li B.Q., H.C. de Groh: Numerical study of g-jitter induced double-diffusive convection. Numerical Heat Transfer, vol. 39, p. 245 (2001).
Leonardi E., de Vahl Davis G., Timchenko V., Chen P., Abbaschian R.: Modelling of binary alloy solidification in the MEPHISTO experiment, C. R. Mecanique, vol. 332, p. 403 (2004).
Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, vol. 15, p. 59 (1976).
Firoozabadi A.: Thermodynamics of Hydrocarbon Reservoirs, McGraw-Hill, New York, (1999).
Lohrenz J., Bray B.G., Clark C.: Calculating viscosities of reservoir fluids from their compositions, Journal of Petroleum Technology, October, p. 1171 (1964).
Patankar, S.V., Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, (1980).
Chacha M., Saghir M.Z., Van Vaerenbergh S., Legros J.C.: Influence of thermal boundary conditions on the double-diffusive process in a binary mixture. Philosophical Magazine, vol. 83: 17–18, p. 2109 (2003).
Pan S., Yan, Y., Jiang C., Kawaji M., Saghir M.Z.: The evaluation of thermal diffusion models for ternary hydrocarbon mixtures. J Non-equilibrium Thermodynamics, accepted (2006).
http://microgravity.grc.nasa.gov/MSD/MSD_htmls/sams.html
http://www.nasa.gov/mission_pages/station/multimedia/index.html
Shevtsova V., Melnikov D., Legros J.C.: The post flight study of micro acceleration on-board of Russian spacecraft FOTON-12, European Space Agency Contract Report (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yan, Y., Pan, S., Jules, K. et al. Vibrational effect on thermal diffusion under different microgravity environments. Microgravity sci. Technol. 19, 12–25 (2007). https://doi.org/10.1007/BF02911863
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02911863