Skip to main content
Log in

Vibrational effect on thermal diffusion under different microgravity environments

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

Microgravity environments may provide perspective platforms for studying the phenomenon of thermal diffusion. It is, however, noted that the residual microaccelerations (g-jitters) in space laboratories may affect the accuracy of experiments due to convections that they induce. An appropriate interpretation of experimental results from the Space relies on a thorough understanding of the influence of g-jitters on thermal diffusion. In this paper, we have modelled the thermal diffusion process under different microgravity environments using measured g-jitter data onboard the International Space Station (ISS) and FOTON-12. The fluid system consists of a rectangular cavity filled with a ternary mixture of methane, n-butane and dodecane (50∶20∶30 mol%). A lateral heating condition is applied. Various case scenarios have been studied with respect to different locations in the ISS and FOTON; and a detailed analysis is made in comparison with the ideal zero gravity (0-g) scenario. It is found that the diffusion process is only slightly affected by the g-jitters in both platforms. Recommendations are made according to the findings from this study for the improvement of the accuracy of diffusion experiments in Space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haase, R.: Thermodynamics of Irreversible Processes. Addison Wesley, (1969).

  2. Kempers, L.J.T.M.: A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. Journal of Chemical Physics, vol. 115, p. 6330 (2001).

    Article  Google Scholar 

  3. Shukla K., Firoozabadi A.: A new model of thermal diffusion coefficients in binary hydrocarbon mixtures. Ind. Engrg. Chem. Res., vol. 37, p. 3331 (1998).

    Article  Google Scholar 

  4. Ghorayeb, K., Firoozabadi, A.: Molecular, pressure, and thermal diffusion in nonideal multicomponent mixtures. AIChE Journal: Fluid Mechanics and Transport Phenomenon, vol. 46, no.5, p. 883 (2000).

    Google Scholar 

  5. Firoozabadi, A., Ghorayeb, K., and Shukla, K.: Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE Journal: Fluid Mechanics and Transport Phenomenon, vol. 46, no.5, p. 892 (2000).

    Google Scholar 

  6. Pan S., Jiang C., Yan Y., Kawaji M., Saghir M.Z.: Theoretical prediction of thermal diffusion in water-methanol, water-ethanol and water-isopropanol mixtures using PC-SAFT equation of state. Journal of Nonequilibrium Thermodynamics, vol. 31, no. 1, p. 47 (2006).

    Article  MATH  Google Scholar 

  7. Costeséque P., Gaillard S., Gachet Y., Jamet Ph.: Determination of the apparent negative Soret coefficient of water-10% alcohol solutions by experimental and numerical methods in packed cells. Philosophical Magazine, vol. 83, no. 17–18, p. 2039 (2003).

    Google Scholar 

  8. Dutrieux, J.F., Platten J.K., Chavepeyer G., Bou-Ali M.M.: On the Measurement of Positive Soret Coefficients. J. Phys. Chem. B, vol. 106, no. 23, p. 6104 (2002).

    Article  Google Scholar 

  9. Kita R., Wiegand S., Luettmer-Strathmann J.: Sign change of the Soret coefficient of poly (ethylene oxide) in water/ethanol mixtures observed by thermal diffusion forced Rayleigh scattering. J. Chem. Phys., vol. 121, no. 8, p. 3874 (2004).

    Article  Google Scholar 

  10. Bert, J., Dupuy-Philon, J.: Microgravity measurement of the Soret effect in a molten salts mixture. J. Physics: Condensed Matter, vol. 9, no. 50, p. 11045 (1997)

    Article  Google Scholar 

  11. Garandet, J.P., Praizey, J.P., Van Vaerenbergh, S., Alboussiere, T.: On the problem of natural convection in liquid phase thermotransport coefficients measurements, Physics of Fluids, vol. 9, no.3, p. 510 (1997)

    Article  Google Scholar 

  12. van Vaerenbergh S., Legros J.C.: Soret coefficients of organic solutions measured in the microgravity SCM experiment and by the flow and Bénard cells, J. Phys. Chem. B, vol. 102, no. 22, p. 4426 (1998)

    Article  Google Scholar 

  13. Jules, K., Hrovat, K., Kelly, E.: International Space Station Increment-2. Quick Look Report, NASA, Glenn Research Center, Cleveland, Ohio (2001)

    Google Scholar 

  14. Abrashkin V.I., Volkov M.V., Egorov A.V., Zaitsev A.S., Kazakova A.E., Sazonov V.V.: An analysis of the low-frequency component in measurements of angular velocity and microacceleration onboard the Foton-12 satellite, Cosmic Research, vol. 41, no.6, p. 593 (2003).

    Article  Google Scholar 

  15. Monti R., Savino R.: A new approach to g-level tolerability for fluid and material science experiments. Acta Astronautica, vol. 37, p. 313, (1995).

    Article  Google Scholar 

  16. Monti R., Savino R.: Influence of g-jitter on fluid physics experimentation onboard the ISS, ESA Symposium Proceedings on Space Station Utilisation, Darmstadt, Germany, September 30–October 2 (1996).

  17. Savino R., Monti R.: Convection induced by residual-g and g-jitters in diffusion experiments, Int. J. Mass Heat Transfer, vol. 42, p. 111 (1999).

    Article  MATH  Google Scholar 

  18. Monti R., Savino R., Lappa M.: On the convective disturbances induced by g-jitters on the space station, Acta Astronautica, vol. 48, no. 5–12, p. 603 (2001).

    Article  Google Scholar 

  19. Monti R., Patterna D., Savino R.: Counter-measures to migrate residual-g effects on microgravity experiments on the space station. Acta Astronautica, vol. 50, no. 4, p. 209 (2002).

    Article  Google Scholar 

  20. Savino R.: Residual-g and g-jitter effects on the measurement of thermophysical properties in microgravity, Advanced Space Research, vol. 29, no.4, p. 559 (2002).

    Article  Google Scholar 

  21. Savino R., Lappa M.: Assessment of thermovibrational theory: application to g-jitter on the Space Station. J. Spacecraft and Rockets, vol. 40, no. 2, p. 201 (2003).

    Article  Google Scholar 

  22. Chacha M., Saghir M.Z., Viviani A.: 3D Numerical Simulations of Thermodiffusion Experiment for a Ternary Mixture On-Board Foton. Microgravity—science and technology, XVII-2, p. 31 (2005).

    Article  Google Scholar 

  23. Chacha M., Faruque D., Saghir M.Z., Legros J.C.: Solutal thermodiffusion in binary mixture in the presence of g-jitter. Int. J. Thermal Science. vol. 41, no. 10, p. 899 (2002).

    Article  Google Scholar 

  24. Chacha M., Saghir M.Z.: Solutal-thermo-diffusion convection in a vibrating rectangular cavity. Int. J. Thermal Sciences, vol. 44, p. 1 (2005).

    Article  Google Scholar 

  25. Yan Y., Shevtsova V., Saghir, M.Z.: Numerical study of low frequency g-jitter effect on thermal diffusion. Fluid Dynamics and Materials Processing, vol. 1, no. 4, p. 315 (2005).

    Google Scholar 

  26. Shevtsova V., Melnikov D., Legros J.C., Yan, Y., Saghir Z., Lyubimova T., Sedelnikov G., Roux B.: Influence of vibrations on thermodiffusion in binary mixture. Benchmark of numerical solutions, Physics of Fluids, accepted (2006)

  27. Yan Y., Adimoolam C., Saghir M.Z.: Double diffusion convection under sinusoidal modulations of low frequency vibrations, 57th International Astronautical Congress, Valencia, Spain, October 2–6, 2006

  28. Shu Y., Li B.Q., H.C. de Groh: Numerical study of g-jitter induced double-diffusive convection. Numerical Heat Transfer, vol. 39, p. 245 (2001).

    Article  Google Scholar 

  29. Leonardi E., de Vahl Davis G., Timchenko V., Chen P., Abbaschian R.: Modelling of binary alloy solidification in the MEPHISTO experiment, C. R. Mecanique, vol. 332, p. 403 (2004).

    Article  Google Scholar 

  30. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, vol. 15, p. 59 (1976).

    Article  MATH  Google Scholar 

  31. Firoozabadi A.: Thermodynamics of Hydrocarbon Reservoirs, McGraw-Hill, New York, (1999).

    Google Scholar 

  32. Lohrenz J., Bray B.G., Clark C.: Calculating viscosities of reservoir fluids from their compositions, Journal of Petroleum Technology, October, p. 1171 (1964).

    Google Scholar 

  33. Patankar, S.V., Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, (1980).

    MATH  Google Scholar 

  34. Chacha M., Saghir M.Z., Van Vaerenbergh S., Legros J.C.: Influence of thermal boundary conditions on the double-diffusive process in a binary mixture. Philosophical Magazine, vol. 83: 17–18, p. 2109 (2003).

    Article  Google Scholar 

  35. Pan S., Yan, Y., Jiang C., Kawaji M., Saghir M.Z.: The evaluation of thermal diffusion models for ternary hydrocarbon mixtures. J Non-equilibrium Thermodynamics, accepted (2006).

  36. http://microgravity.grc.nasa.gov/MSD/MSD_htmls/sams.html

  37. http://www.nasa.gov/mission_pages/station/multimedia/index.html

  38. Shevtsova V., Melnikov D., Legros J.C.: The post flight study of micro acceleration on-board of Russian spacecraft FOTON-12, European Space Agency Contract Report (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Saghir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Pan, S., Jules, K. et al. Vibrational effect on thermal diffusion under different microgravity environments. Microgravity sci. Technol. 19, 12–25 (2007). https://doi.org/10.1007/BF02911863

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02911863

Keywords

Navigation