Skip to main content
Log in

Zinc content in selected tissues in streptozotocin-diabetic rats after maximal exercise

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The Zn metabolism in experimental diabetic rats after maximal exercise was investigated. Forty male wistar rats were used, weighing 240±10 g at the beginning of this experiment. The animals were assigned to one of four experimental groups (n=10): control at rest (CR), control plus exercise (CE), diabetic at rest (DR), and diabetic plus exercise (DE). Experimental diabetes was produced by a single intraperitoneal injection of streptozotocin (STZ) (60 mg/kg). Thirty days after injection of streptozotocin, the animals of groups CE and DE were forced to acute exercise (swimming) until exhaustion. Glucose, rectal temperature (RT), pH, swimming time (ST), hematocrit (Hct), serum, and tissue (heart, liver, kidney, and muscle) Zn concentrations were measured. The streptozotocin treated animals used in the current experiment were diabetic. Increases in hepatic, renal muscle, and serum levels Zn at rest and after exercise until exhaustion were found in normal and diabetic rats. ST decreased (−180%) in the diabetic rat group. In conclusion, the results of the present study indicate that STZ-induced diabetes was associated with altered tissue Zn concentration, both at rest and after exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Horton,Diab. Care 11, 201 (1988).

    Article  CAS  Google Scholar 

  2. M. Vranic and M. Berger,Diabetes 28, 147 (1979).

    PubMed  CAS  Google Scholar 

  3. B. Jacober, R. M. Schmulling, and M. Sggstein,Int. J. Sports Med. 4, 104 (1983).

    Google Scholar 

  4. D. H. Wasserman and N. N Abumrad,Sports Med. 7, 376 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. N. J. Christensen, H. Galbo, J. F. Hansen, B. Hesse, E. A. Richter, and J. Trapjensen,Diabetes 28, 28 (1979).

    Google Scholar 

  6. M. L. Failla and R. A. Kiser,J. Nutr. 111, 1900 (1981).

    PubMed  CAS  Google Scholar 

  7. R. J. Cousins,Physiol. Rev. 65, 238 (1985).

    PubMed  CAS  Google Scholar 

  8. J. H. Lee, M. Konarka, and R. McCarty,Physiol. Behav. 45, 483 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. M. L. Failla and C. Y. Gardell,Proc. Soc. Exp. Biol. Med. 180, 317 (1985).

    PubMed  CAS  Google Scholar 

  10. W. T. Johnson and G. W. Evans,J. Nutr. 114, 180 (1984).

    PubMed  CAS  Google Scholar 

  11. A. M. Huber and S. N. Gershoff,J. Nutr. 103, 1739 (1973).

    PubMed  CAS  Google Scholar 

  12. P. McNair, S. Killerich, C. Christiansen, M. S. Christensen, S. Madsbad, and I. Transbol,Clin. Chim. Acta 112, 343 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. A. Córdova, F. J. Navas, L. M. Elosegui, and J. F. Escanero,Magnesium, in press.

  14. I. Raz and E. Hahvivi,Diab. Res. 7, 19 (1988).

    CAS  Google Scholar 

  15. M. L. Failla and R. A. Kiser,Am. J. Physiol. 244, E115 (1983).

    PubMed  CAS  Google Scholar 

  16. R. E. Serfass, K. E. Park, and M. L. Kaplan,Proc. Soc. Exp. Biol. Med. 189, 229 (1988).

    PubMed  CAS  Google Scholar 

  17. S. H. Oh, J. T. Deagen, P. D. Whanger and P. H. Weswig,Am. J. Physiol. 234, E282 (1978).

    PubMed  CAS  Google Scholar 

  18. A. Córdova and V. Villar,Rev. Esp. Fisiol. 46, 399 (1990).

    PubMed  Google Scholar 

  19. K. James, M. Merriman, R. S. Gray, L. J. P. Duncan, and R. Herd,J. Clin. Pathol. 33, 163 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. P. Pozzilli, U. Dimario, M. Javicoli, M. Chinca, and M. Orsini,Horm. Metab. Res. 12, 409 (1980).

    PubMed  CAS  Google Scholar 

  21. W. W. Campbell and R. A. Anderson,Sports Med. 4, 9 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. T. Watanabe, A. Morimoto, Y. Sakata, N. Tan, K. Morimoto, and N. Murakami,J. Appl. Physiol. 73, 2452 (1992).

    PubMed  CAS  Google Scholar 

  23. A. Córdova, M. Gimenez and J. F. Escanero,J. Trace Elem. Electrolytes Health Dis. 4, 189 (1990).

    PubMed  Google Scholar 

  24. A. Córdova, M. Giminez, and J. F. Escanero,Physiol. Behav. 48, 596 (1990).

    Article  Google Scholar 

  25. A. Córdova, F. J. Navas, and J. F. Escanero,Biol. Trace Elem. Res. 39, 13 (1993).

    Article  PubMed  Google Scholar 

  26. A. Córdova, J. L. Anghileri and C. Saunier,Physiol. Behav. 55, 413 (1994).

    Article  PubMed  Google Scholar 

  27. W. T. Johnson and W. K. Canfield,J. Nutr. 115, 1217 (1985).

    PubMed  CAS  Google Scholar 

  28. M. Gimenez, A. Córdova, J. L. Anghileri, and J. F. Escanero,Nutrition et Sport, Masson, Paris (1990).

    Google Scholar 

  29. H. Ohno, K. Yamashita, R. Doi, K. Yamamura, T. Kondo, and N. Taniguchi,J. Appl. Physiol. 58, 1453 (1985).

    PubMed  CAS  Google Scholar 

  30. A. S. Prasad,Trace Elements and Iron in Human Metabolism, Plenum, 1979.

  31. R. D. Murphy, A. C. Vailas, C. M. Tipton, R. D. Matthes, and J. G. Edwards,J. Appl. Physiol. 50, 482 (1981).

    PubMed  CAS  Google Scholar 

  32. R. B. Armstrong and C. D. Ianuzzo,Horm. Metab. Res. 8, 392 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordova, A. Zinc content in selected tissues in streptozotocin-diabetic rats after maximal exercise. Biol Trace Elem Res 42, 209–216 (1994). https://doi.org/10.1007/BF02911518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02911518

Index Entries

Navigation