Geosciences Journal

, 10:347 | Cite as

New maastrichtian oxygen and carbon isotope record: Additional evidence for warm low latitudes

  • Yuri D. Zakharov
  • Alexander M. Popov
  • Yasunari Shigeta
  • Olga P. Smyshlyaeva
  • Ekaterina A. Sokolova
  • Ragavendra Nagendra
  • Tatiana A. Velivetskaya
  • Tamara B. Afanasyeva


The Cretaceous period was generally characterized by greenhouse conditions. Nevertheless, our data on isotopic composition of biogenic carbonates from the Koryak Upland and Sakhalin (Russian Far East) show that during the Maastrichtian, temperatures dropped sharply at high and middle latitudes, with only a slight warming in the early Late Maastrichtian. At the same time, there is contradictory evidence on climatic conditions for low latitude areas during Maastrichtian time. The new and previously published isotopic data on Maastrichtian mollusks in the Western Interior Seaway (North America) (WIS) and some other areas suggest that tropical deep-sea surface temperatures calculated from the oxygen isotopic composition of the majority of investigated Maastrichtian planktic foraminifera are, obviously, underestimated. Unusually low isotopic temperatues were obtained for tropical planktic foraminifera. This probably reflects both local conditions provoked, first of all, by the influence of tropical upwelling zones, and the ability of Maastrichtian planktic foraminifera to migrate within a large vertical interval in the tropical zone in conditions of weakly stratified (well-mixed) ocean. The average tropical deep-sea surface paleotemperature estimates for the Maastrichtian could have been about 26.6–30.2°C, but, apparently, did not reach the level denoted for the Late Albian and Turonian (32±3°C). Negative carbon-isotopic shifts at the end of the early Maastrichtian and the Cretaceous-Tertiary boundary time seem to be connected with the fall of temperature and eventual reduction of oxygen content in the atmosphere and hydrosphere.

Key words

Maastrichtian invertebrates isotopic palcotemperatures carbon-isotopic anomalies Pacific and Atlantic oceans 


  1. Ablaev, A.G., Khudik, V.D., Biryulina, M.G., Pletnev, S.P. and Ashurov, A.A., 1992, Biostratigraphy of the Musau Trench (Caroline Basin). Geo-Marine Letters, Springer-Verlag, New York, 12, 236–239.Google Scholar
  2. Abramovich, S., Keller, G., Stube, D. and Berner, Z., 2003, Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palacogcography, Palacoclimatology, Palacoccology, 202, 1–29.CrossRefGoogle Scholar
  3. Anderson, T.F. and Arthur, M.A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and palacoenvironmental problems. Stale isotopes in sedimentary gcology. SEPM Short Course, 10, 1–151.Google Scholar
  4. Archana Tewari, Hart, M.B. and Watkison, M.P., 1996, A reviced lithostratigraphic classification of the Cretaceous rocks of the Trichipoly District, Cauvery Basin, and Southeast India. Contributions of XV Indian Colloquium on Micropal. Stral. Dchra Dun, p. 789–800.Google Scholar
  5. Barrera, E., 1994, Global environmental changes preceding the Cretaccous-Tertiary boundary: Early-late Maastrichtian transition. Geology, 22, 877–880.CrossRefGoogle Scholar
  6. Barrera, E., Huber, B.T., Savin, S.M. and Webb, P.-N., 1987a, Antarctic marine temperatures: Late Campanian through early Paleocene. Palcooceanography, 2(1), 21–47.CrossRefGoogle Scholar
  7. Barrera, E., Savin, S.M., Thomas, E. and Jones, C.-E., 1987b, Evidence for thermohaline-circulation reversal controlled by sealevel change in the latest Cretaceous. Geology, 25(8), 715–718.CrossRefGoogle Scholar
  8. Barron, E.J., Fawcett, P.J., Peterson, W.H., Pollard, D. and Thompson, S., 1995, A ‘simulation’ of mid-Cretaceous climate. Palcoceanography, 10, 953–962.CrossRefGoogle Scholar
  9. Basov, I.A. and Vishnevskaya, V.S., 1991, Stratigraphiya verkhnego mezozoya Tikhogo okeana (Stratigraphy of the Upper Mesozoic of the Pacific ocean). Nauka, Moskva, 200 p. (in Russian).Google Scholar
  10. Boersma, A. and Shackleton, N.J., 1981, Oxygen-and carbon-isotope variations and planktonic-foraminifer depth habitats, late Cretaceous to Palcocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. Initial reports of the Deep Sea Drilling Project, vol. 62 (Marjuro Atoll, Marshall Island to Honolulu, Hawaii), Washington (U.S. Printing Office), pp. 513–526.Google Scholar
  11. Bogdanov, Y.A., Sorokhtin, O.G., Zonenshain, L.P., Kuptsov, V.M., Lisitsina, N.A. and Podrazhanskij, A.M., 1990, Zhelezo-margantsevye korki i konkretsii podvodnykh gor Tikhogo okeana (Iron-manganous crusts and concretions of underwater mountains of the Pacific). Nauka, Moskva, 229 p., 81 figs., 15 pls. (in Russian).Google Scholar
  12. Bowen, R., 1961, Palcotemperature analyses of Mesozoic Belemnoidea from Germany and Poland. Journal of Geology, 69(1), 75–83.CrossRefGoogle Scholar
  13. Bowen, R., 1969, Palcotemperature analysis. Methods in geochemistry and geophysics. Nedra, Leningrad, 207 p. (in Russian).Google Scholar
  14. Burma, A., 1986, Palcotemperatures and carbon isotope ratio in the Campanian trough Palcocene interval and the Cretaceous-Tertiary boundary at the Atlantic ocean. In: Berggren, U. and Kauverting, J. Van (eds.), Katastrophy vistorii Zemli. Novyj uniformizm. (Catastrophes in the Earth history. New Uniformism) Moscow, Mir, pp. 255–284 (in Russian).Google Scholar
  15. Caron, M., 1985, Cretaceous planktonic foraminifera. In: Bolli, H.B., Sounders, J.B. and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, 17–86.Google Scholar
  16. Clarke, L.J. and Jenkyns, H.C., 1999, New oxygen isotope evidence for long-term Cretaceous climatic change in the South Hemisphere. Geology, 27(8), 699–702.CrossRefGoogle Scholar
  17. Cochran, J.K., Landman, N.H., Turckian, K.K., Michard, A. and Schrag, D.P., 2003, Palcoceanography of the Late Cretaceous (Maastrichtian) Western Interior Scaway of North America: evidence from Sr and O isotopes. Palacogeography, Palacoclimatology, Palacoccology, 191, 45–64.CrossRefGoogle Scholar
  18. Davis, T.T. and Hooper, P.R., 1963, The determination of the calcite: aragonite ratio in molluse shells by x-ray diffraction. Mineralogical Magazine, 33(262), 608–612.CrossRefGoogle Scholar
  19. D'Hondt, S. and Arthur, M.A., 1995, Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography, 10(1), 123–135.CrossRefGoogle Scholar
  20. D'Hondt, S. and Arthur, M.A., 1996, Late Cretaceous oceans and the cool tropic paradox. Science, 271, 1838–1841.CrossRefGoogle Scholar
  21. Douglas, R.G. and Savin, S.M., 1971, Isotopic analyses of planktonic formation from the Cenozoic of the Northwest Pacific, LEG 6. Initial reports of the Deep Sea Drilling Project, 6, 1123–1127.Google Scholar
  22. Douglas, R.G. and Savin, S.M., 1973, Oxygen and carbon isotope analyses of Cretaccous and Tertiary foraminifera from the Central North Pacific. Initial reports of the Deep Sea Drilling Project, 17, 551–605.Google Scholar
  23. Douglas, R.G. and Savin, S.M., 1975, Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. Initial reports of the Deep Sea Drilling Project, 32, 509–520.Google Scholar
  24. Epstein, S., Buchsbaum, R., Lowenstam, H.A. and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale. Geological Society of America, Bulletin, 64(11), 1315–1326.CrossRefGoogle Scholar
  25. Golbert, A.V., 1987, Osnovy regionalnoi palcoklimatologii (Basics of regional palcoclimatology). Mosow, Nedra, 223 p. (in Russian).Google Scholar
  26. Grossman, E.L. and Ku, T.-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59, 59–74.CrossRefGoogle Scholar
  27. Grossman, E.L., Zhang, C. and Yancey T.E., 1991, Stable-isotope stratigraphy of brachiopods from Pensilvanian shales in Texas. Geological Society of America, Bulletin, 103, 953–965.CrossRefGoogle Scholar
  28. Houston, R.M. and Huber, B.T., 1998, Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera. Marine Micropalcontology, 34, 29–46.CrossRefGoogle Scholar
  29. Houston, R.M., Huber B. and Spero, H.J., 1999, Seze-related isotopic trends in some Maastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis. Marine Micropalcontology, 36, 169–188.CrossRefGoogle Scholar
  30. Huber, B.T., Hodell, D.A. and Hamilton, C.P., 1995, Mid-to Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America, Bulletin, 107, 1164–1191.CrossRefGoogle Scholar
  31. Huber, B.T., Norris, R.D. and MacLeod, K.G., 2002, Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30(2), 123–126.CrossRefGoogle Scholar
  32. Jagt, J.W.M., 1995, The Maastrichtian of the type area (Southern Limburg, the Netherlands): recent developments. Second International Symposium on Cretaceous stage boundaries. Al. Excursion to Maastricht. Institut royal des Sciences Naturelles de Belgique, Brussels, Belgium, pp. 2–15.Google Scholar
  33. Jenkyns, H.C., Forster, A., Schouten, S. and Damsté, J.S.S., 2004, High temperatures in the Late Cretaceous Aretic Ocean. Nature, 436(16), 888–892.CrossRefGoogle Scholar
  34. Kalishevich, T.G., Zaklinskaya, E.D. and Serova, M.Y., 1981, Razvitiye organicheskogo mira Tikhookcanskogo poyasa na rubezhe mezozoya i kainozoya. Foraminifery, mollyuski i palinoflora Severo-Zapadnogo sektora (Evolution of the Pacific Belt biota during Mesozoic-Cenozoic boundary time. Foraminifera, mollusks and palynoflora). Nauka, Moscow, 164 pp. (in Russian).Google Scholar
  35. Kauffman, E.G. and Johnson, C.C., 1988, The morphological and ecological evolution of middle and Upper Cretaceous reef-building rudists. Palaios, 3, 194–216.CrossRefGoogle Scholar
  36. Kobashi, T., Grossman, E.L., Yancey, T.E. and Dockery III, D.T., 2001, Recvaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes. Geology, 29(11), 983–986.CrossRefGoogle Scholar
  37. Kobashi, T., Grossman, E.L., Yancey, T.E. and Dockery III, D.T. and Ivany, L.C., 2004, Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Voast continental shelf (USA). Palcoceanography, 19, in press.Google Scholar
  38. Landman, N.H. and Waage, K.M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dacota and Wyoming. Bulletin of the American Museum of Natural History, 215, 1–257.Google Scholar
  39. Larson, N.L., 2003, The Late Campanian (Upper Cretaccous) cephalopod fauna of the Coon Creck Formationmat its type locality. Coon Creek Monograph, SE Palcontological Society Field Trip Guidebook. 60 p.Google Scholar
  40. Larson, R.L., Moberly, R., Bukry, D., Foreman, H.P., Gardner, J.V., Keene, J.B., Lancelot, Y., Luterbacher, H., Marshall, M.C. and Matter, A., 1975, Site 303: Japanese magnetic lincations. Initial Reports of the Deep Sea Drilling Projcet, 32, 17–43.Google Scholar
  41. Lewy, Z., 1995, Hypothetical endosymbiotic zooxanthellac in rudists are not needed to explain their ecological nishes and thick shells in comparison with hermatypic corals. Cretaceous Research, 16(1), 25–37.CrossRefGoogle Scholar
  42. Lowenstam, H.A. and Epstein, S., 1954, Palcotemperatures of post-Aptian Cretaceous as determined by the oxygen isotope methods. Journal of Geolgoy, 62(3), 207–248.Google Scholar
  43. Lowenstam, H.A. and Epstein, S., 1959, Cretaceous palcotemperatures as determined by the oxygen isotope method, their relations to and the nature of rudistid reefs. XX International Geological Congress (Mexico, 1956). El sistema Cretacico, 1. Mexico, pp. 65–76.Google Scholar
  44. MacLeod, K.G. and Huber, B.T., 1996, Reorganization of deep ocean circulation accompany in a Late Cretaceous extinetion event. Nature, 380, 422–425.CrossRefGoogle Scholar
  45. MacLeod, K.G. and Huber, B.T., 2001, The Maastrichtian record at Blake Nose (western North Atlantic) and implications for global palacoceanographic and biotic changes. In: Kroon, D., Norris, R.D., Klaus, A. (eds.), Western North Atlantic Palacogene and Cretaceous Palacoceanography. Geological Society, London, Special Publication, 183, 11–130.Google Scholar
  46. MacLeod, K.G., Huber, B.T. and Ducharme, M.L., 2000, Palcontological and geochemical constraints on the deep ocean during the Cretaceous greenhouse interval. In: Huber, B.T., MacLeod, K.G., Wing, S.L. (eds.), Warm climates in Earth history. Cambridge University Press, pp. 241–274.Google Scholar
  47. McConnaughy, T., 1989,13C and18O isotopic disequilibrium in biological carbonates, II. In vitro simulation of kinetic isotopic effects. Geochimica and Cosmochimica Acta, 53, 163–171.CrossRefGoogle Scholar
  48. Melnikov, M.E., Shkolnik, E.L., Pulyaeva, I.A. and Popova, T.V., 1995a, Results of the detailed study of oxide ferromanganesian and phosphorite mineralization on the IOAN guyot (Western Pacific). Tikhookeanskaya Geologiya, 14(5), 4–20 (in Russian).Google Scholar
  49. Melnikov, M.E., Shkolnik, E.L., Senkovva, T.V., Pulyaeva, I.A., Popova, T.V. and Mechetin, A.V., 1995b, Geological structure and minerals of Batisa guyot. Tikhookeanskaya Geologiya, 1, 23–40, 2 pls. (in Russian).Google Scholar
  50. Miller, K.G., Barrera, E., Olsson, R.K., Sugarman, P.J. and Savin, S.M., 1999, Docs ice drive Maastrichtian custasy? Geology, 27, 783–786.CrossRefGoogle Scholar
  51. Moro, A., Skelton, P.W. and Eosoviæ, V., 2002, Palacoenvironmental setting of rudists in the Upper Cretaceous (Turonian-Maastrichtian) Adriatic Carbonate Platform (Croatia), based on sequence stratigraphy. Cretaceous Research, 23, 489–508.CrossRefGoogle Scholar
  52. Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. and Takayanagi, Y., 2003, Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern pacific thermal structure. Geology, 31(2), 167–170.CrossRefGoogle Scholar
  53. Naidin, D.P., 2001, Meridional connections of Late Cretaceous marine biota of the Northern Hemisphere. Tikhookeanskaya Geologiya, 20(1), 8–14 (in Russian).Google Scholar
  54. Norris, R.D. and Wilson, P.A., 1998, Lower latitude sea surface temperature for the mid-Cretaceous and the evolution of planktonic foraminifera. Geology, 26, 823–826.CrossRefGoogle Scholar
  55. Packham, G.M. and Andrews, J.E., 1975, Results of leg 30 and the geological history of the South-West Pacific are marginal sea complex. Initial reports of the Deep Sea Drilling Project, 30, 691–705.Google Scholar
  56. Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Bown, G., Nicholas, Ch.J., Olsson, K., Shackleton, N.J. and Hall, M.A., 2001, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(4), 481–487.CrossRefGoogle Scholar
  57. Pergament, M.A., 1961, Upper Cretaceous stratigraphy of north-castern Kamchatka. Trudy Geologicheskogo Instituta Akademii Nauk SSSR, 39, 1–147 (in Russina).Google Scholar
  58. Pirrie, D. and Marshall, J.D., 1990, High-palcolatitude Late Cretaceous palcotemperatures: New data from James Ross Island, Antaretica. Geology, 18(1), 31–34.CrossRefGoogle Scholar
  59. Pletnev, S.P. and Buryulina, M.G., 1989, Biostratigraphicheskie issledovaniya zapadnoi chasti Tikhogo okeana (Novogibridskie zheloba, khrebet Mikhelsona i Magellanovy gory) (Biostratigraphic researches of the western Pacific (New Gebrid trenches, Mikhelson ridge and Magellan Rise)). Preprint. Dalnevostochnoye Otdeleniye Akademii Nauk SSSR, Vladivostok, 36 p. (in Russian).Google Scholar
  60. Price, G.D. and Hart, M.B., 2002, Isotopic evidence for Early to mid-Cretaceous occan temperature variability. Marine Micropalcontology, 46, 45–58.CrossRefGoogle Scholar
  61. Savin, S.M., 1977, The history of the earth's surface temperature during the past 100 million years. Annual Revew of Earth and Planetary Sciences 5, 319–355.CrossRefGoogle Scholar
  62. Schrag, D.P., 1999, Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology, 161, 215–224.CrossRefGoogle Scholar
  63. Shkolnik, E.L., Tang Tianfu, Sue Yaosong and Yuo Qonglin, 1996, Electron microscope study of phosphorite in IOAN guyot, the West Pacific. Tikhookeanskaya Geologiya, 15(1), 102–109 (in Russian).Google Scholar
  64. Skelton, P.W. and Wright, V.P., 1987, Caribbean rudist bivalve in Oman, Island hopping across the Pacific in the Late Cretaccous. Palacontology, 30, 505–529.Google Scholar
  65. Smyshlyacva, O.P., Zakharov, Y.D., Shigeta, Y., Tanabe, K., Ignatiev, A.V., Velivetskaya, T.A., Popov, A.M., Afanasyeva, T.B. and Moria, K., 2002, Optimal temperatures of growth in Campanian ammonoids of Sakhaline (Krilyon) and Hokkaido: oxygen and carbon isotopic data.In: Cretaceous continental margin of East Asia: stratigraphy, sedimentation, and tectonics: The IVth Intern. Symp. of IGCP 434, September 2002 Abstracts. Khabarovsk, p. 97–98.Google Scholar
  66. Smyshlyaeva, O.P., Zakharov, Y.D., Shigeta, Y., Velivetskaya, T.A., Ignatiev, A.V., Afanasyeva, T.B. and Zonova, T.D., 2004, New data on stable isotopes of Cretaceous mollusks of Europe and Mangyshlak and the problem of ontogenetic vertical migration of Albian cephalopods. In: Cretaceous System in Russia: problems of stratigraphy and palcogcography. Abstracts of 2nd All-Russian Meeting (S-Peterburg, 2004). S.-Peterburg State University, S.-Peterburg, p. 74 (in Russian).Google Scholar
  67. Sokolova, E.A., 1998, Palcookcanologicheskie rekonstruktsii Tikhogo okcana dlya kontsa pozdnego mela (Maastricht) po planktonnym foraminiferam. Moskva (Palcoceanological reconstruction of the Pacific ocean for the end of the Cretaceous (Maastrichtian)). Vserossijskij Institut Nauchno-Tekhnicheskoj Informatsii (VINITI), 1998 (1351–V98), 174 p. (in Russian).Google Scholar
  68. Sokolova, E.A., 1999, Evolution of climatic zones in the Maastrichtian from planktonic foraminifera. Doklady Akademii Nauk, 367(1), 99–101 (in Russian).Google Scholar
  69. Stepanov, V.N., 1974, Mirovoy okean (World Occan). Znaniye, Moscow, 255 p. (in Russian).Google Scholar
  70. Steuberg, T., 1996, Stable isotope selerochronology of rudist bivalves: Growth rates and Late Cretaceous seasonality. Geology, 24(4), 315–318.CrossRefGoogle Scholar
  71. Stevens, G.R., Clayton R.N., 1971, Oxygen isotope studies on Jurassic and Cretaceous belemnites from New Zealand and their biogeographic significance. New. Zealand. Journal of Geology and Geophysics, 14, 829–897.Google Scholar
  72. Stott, L.D and Kennett, J.P., 1990, The palcoceanographic and paleoclimatic signature of the Cretaceous/Palcogene boundary in the Antarctic: stable isotopic results from ODP LEG 113. Proceedings of the Ocean Drilling Program, 113, 829–846.Google Scholar
  73. Teiss, R.V. and Naidin, D.P., 1973, Paleotermometriya i izotopnyj sostav kisloroda organogennukh karbonatov (Palcotermometry and oxygen isotopic composition of organogenic carbonates). Moscow, Nauka, 255 p. (in Russian).Google Scholar
  74. Vereschagin, V.N., 1977, Melovaya sistema Dalnego Vostoka (Cretaceous system of Far East). Nedra, Leningrad, 208 p. (in Russian).Google Scholar
  75. Wilson, P.A. and Norris, R.D., 2001, Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412, 425–429.CrossRefGoogle Scholar
  76. Wilson, P.A. and Opdyke, B.N., 1996, Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24(6), 555–558.CrossRefGoogle Scholar
  77. Wilson, P.A., Norris, R.D. and Cooper, M.J., 2002, Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropies on Demerara Rise. Geology, 30(7), 607–610.CrossRefGoogle Scholar
  78. Yildiz, A. and Özdemir, Z., 1999, Biostratigraphic and isotopic data on the Coreklik Member of the Hekimhan Formation (Campanian-Maastrichtian) of SE Turkey and their palacoenvironmental significance. Cretaceous Research, 20, 107–117.CrossRefGoogle Scholar
  79. Zachos, J.C., Stott, L.D. and Lohmann, K.C., 1994, Evolution of carly Cenozoic marine temperatures. Palcoceanography, 9, 353–387.CrossRefGoogle Scholar
  80. Zakharov, Y.D., Boriskina, N.G., Ignatyev, A.V., Tanabe, K., Shigeta, Y., Popov, A.M., Afanasyeva, T.B. and Maeda, H., 1999, Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific. Cretaceous Reseach, 20, 685–697.CrossRefGoogle Scholar
  81. Zakharov, Y.D., Grabovskaya, V.S. and Kalishevich, T.G., 1984a, Late Cretaceous succession of marine communities in south Sakhalin and climatic peculiarities of North Western Pacific. Sistematika i cvolyutsiya bespozvonochnykh Dalnego Vostoka (Systematics and evolution of Far Eastern invertebrates). Dalnevostocnyj Nauchnyj Tsentr Akademii Nauk SSSR, Vladivostok, p. 41–90 (in Russian).Google Scholar
  82. Zakharov, Y.D., Ignatiev, A.V. and Khudolozhkin, V.O., 1984b, Stable oxygen and carbon isotopes of Cretaceous-Palcogene invertebrates. Izvestiya Akademii Nauk SSSR, Scriya Geologicheskaya, 2, 24–34.Google Scholar
  83. Zakharov, Y.D., Ignatiev, A.V., Ukhaneva, N.G. and Afanasyeva, T.B., 1996, Cretaceous ammonoid succession in the Far East (South Sakhalin). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique., Sciences de la Terre, 66, 109–127.Google Scholar
  84. Zakharov, Y.D., Melnikov, M.E., Khudik, V.D., Punina, T.A., Pletnev, S.P. and Smyshlyacva, O.P., 2003a, A new find of ammonoids (Cephalopoda) in the oceanic floor deposits. Tikhookeanskaya Geologiya, 22(5), 51–57 (in Russian).Google Scholar
  85. Zakharov, Y.D., Naidin, D.P. and Teiss, R.B., 1975, Oxygen isotope composition in Early Triassic cephalopod shells of Arctic Siberia and salinity of boreal basins at the earliest Mesozoic. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 1975(4), 101–113 (in Russian).Google Scholar
  86. Zakharov, Y.D., Smyshlyaeva, O.P., Popov, A.M., Golozubov, V.V., Ignatiev, A.V., Velivetskaya, T.A., Tanabe, K., Shigeta, Y., Maeda, H., Afanasyeva, T.B., Cherbadzhi, A.K., Bolotsky, Y.L. and Moriya, K., 2002, Oxygen and carbon isotope, composition of organogenic carbonates of the Koryak Upland. Paper 1. Penzhinskaya Guba. Tikhookeanskaya Geologiya, 21(2), 55–73 (in Russian).Google Scholar
  87. Zakharov, Y.D., Smyshlyaeva, O.P., Shigeta, Y., Tanabe, K., Maeda, H., Ignatiev, A.V., Velivetskaya, Popov, A.M., Afanasyeva, T.A. and Moriya, K., 2003b, Optimum growth temperatures for Campanian ammonoids in Sakhalin and Hokkaido on stable isotope data. Bulleten. Moskovskogo Obschestva Ispytateley Prirody, Otdeleniye Geologii, 78(6), 46–56 (in Russian).Google Scholar
  88. Zakharov, Y.D., Nagendra, R., Smyshlyacva, O.P., Popov, A.M., Velivetskaya, T.A. and Afanasyeva, T.B., 2006, Mass oxygen isotope palaeotemperature measurements on Cretaceous fossils from Southern India (Trichinopoly area) and their palaeogeographical significance. The Second International Palacontological Congress (June 17 T.A., 21, 2006, Bejing, China, Abstracts. Bejjing 215 T.A., 216.Google Scholar
  89. Zeebe, R.E., 2001, Seawater pH and isotopic paleotemperatures of Cretaceous occans. Palaeogeography, Palacoclimatology, Palacoecology, 170, 49–57.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yuri D. Zakharov
    • 1
  • Alexander M. Popov
    • 1
  • Yasunari Shigeta
    • 2
  • Olga P. Smyshlyaeva
    • 1
  • Ekaterina A. Sokolova
    • 3
  • Ragavendra Nagendra
    • 4
  • Tatiana A. Velivetskaya
    • 1
  • Tamara B. Afanasyeva
    • 1
  1. 1.Far Eastern Geological InstituteRussian Academy of Sciences (Far Eastern Branch)VladivostokRussia
  2. 2.Department of GeologyNational Science MuseumTokyoJapan
  3. 3.Institute of OceanologyRussian Academy of SciencesMoscowRussia
  4. 4.Department of GeologyAnna UniversityChennaiIndia

Personalised recommendations