Skip to main content
Log in

Chemical weathering and climate — a global experiment: A review

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

How has the Earth maintained a habitable environment while its closest neighbors, Venus and Mars, are currently too hot or too cold? This fortunate state has been attributed to a negative feedback hypothesis that has stood unchallenged for years. In this model, any increase in atmospheric CO2 production is balanced by increased CO2 uptake by silicate weathering under greenhouse conditions. A decrease in atmospheric CO2, then, is balanced by decreased silicate weathering rates under the colder climate. A global experiment utilizing published geochemical data from large rivers at different latitudes helps us test the climate dependence of weathering, central to this hypothesis. When rivers draining granitic shields and basaltic provinces are compared, there is no systematic latitudinal variation (temperature dependence) in the rates of chemical weathering. At global scale the physical mechanisms superimpose a threshold effect on the underlying climate-dependence of silicate weathering. On tropical cratons, the buildup of lateritic regolith suppresses weathering. In the arctic/ subarctic, frost action efficiently removes the regolith and generates physical exposure of silicate rocks to the weathering agents (water, CO2), thereby accelerating reaction. Available field observations do not support the currently standard Clausius-Clapeyron-Arrhenius model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, G. and Wickman, F.E., 1987, Variations of87Sr/86Sr in water from streams discharging into the Bothnian Bay, Baltic Sea, Nordic Hydrology, 18, 33–42.

    Google Scholar 

  • Ambrosi, J.P. and Nahon, D., 1986, Petrological and geochemical differentiation of lateritic iron profile. Chemical Geology, 57, 371–393.

    Article  Google Scholar 

  • Anderson, S.P., Drever, J.I. and Humphrey, N.F., 1997, Chemical weathering in glacial environments. Geology, 25, 399–402.

    Article  Google Scholar 

  • Andersson, P.S., Wasserburg, G.J., Ingri, J. and Stordal, M.C., 1994, Strontium, dissolved and particulate loads in fresh and brackish waters: the Baltic Sea and Mississippi Delta, Earth and Planetary Science Letters, 124, 195–210.

    Article  Google Scholar 

  • Berner, R.A., 1978, Equilibrium, kinetics and the precipitation of magnesian calcite from seawater. American Journal of Science, 278, 1435–1455.

    Google Scholar 

  • Berner, R.A. and Kothavala, Z., 2001, GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301, 182–204.

    Article  Google Scholar 

  • Berner, R.A., Lasaga, A.C. and Garrels, R.M., 1983, The carbonatesilicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641–683.

    Google Scholar 

  • Blum, J.D. and Erel, Y., 1995, A silicate weathering mechanism linking increases in marine87Sr/86Sr with global glaciation, Nature, 373, 415–418.

    Article  Google Scholar 

  • Bluth, G.J.S. and Kump, L.R., 1994, Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58, 2341–2359.

    Article  Google Scholar 

  • Bourman, R.P., 1993, Models of ferricrete genesis: evidence from southeastern Australia. Zeitschrift Geomorphologie, 37, 77–101.

    Google Scholar 

  • Brown, E.T., Bourlès, D.L., Colin, F., Sanfo, Z., Raisbeck, G.M. and Yiou, F., 1994, The development of iron crust lateritic systems in Burkina Faso, West Africa examined with in-situ produced cosmogenic nuclides. Earth and Planetary Science Letters, 124, 19–33.

    Article  Google Scholar 

  • Dessert, C., Dupré, B., François, L.M., Schott, J., Gaillardet, J., Chakrapani, G. and Bajpai, S., 2001, Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters, 188, 459–474.

    Article  Google Scholar 

  • Edmond, J.M. and Huh, Y., 1997, Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman, W.F. (ed.), Tectonic Uplift and Climate Change. Plenum Press, New York, p. 329–351.

    Google Scholar 

  • Edmond, J.M., Palmer, M.R., Measures, C.I., Grant, B. and Stallard, R.F., 1995, The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia and Brazil. Geochimica et Cosmochimica Acta, 59, 3301–3325.

    Article  Google Scholar 

  • Huh, Y. and Edmond, J.M., 1999, The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochimica et Cosmochimica Acta, 63, 967–987.

    Article  Google Scholar 

  • Huh, Y., Panteleyev, G., Babich, D., Zaitsev, A. and Edmond, J.M., 1998a, The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochimica et Cosmochimica Acta, 62, 2053–2075.

    Article  Google Scholar 

  • Huh, Y., Tsoi, M.-Y., Zaitsev, A. and Edmond, J.M., 1998b, The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton, Geochimica et Cosmochimica Acta, 62, 1657–1676.

    Article  Google Scholar 

  • Kalvoda, J., 1992, Geomorphological Record of the Quaternary Orogeny in the Himalaya and the Karakoram, Elsevier, Amsterdam, 315 p.

    Google Scholar 

  • LaSalle, P., De Kimpe, C.R. and Laverdiere, M.R., 1985, Sub-till saprolites in southeastem Quebec and adjacent New England: Erosional, stratigraphic, and climatic significance. Geological Society of America Special Paper, 197, 13–20.

    Google Scholar 

  • Louvat, P., 1997, Etude géochimique de l'érosion fluviale d'îles volcaniques à l'aide des éléments majeurs et traces. Ph.D. thesis, Université Paris 7, Paris, 322 p. (in French)

    Google Scholar 

  • Louvat, P. and Allègre, C.J., 1998, Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chemical Geology, 148, 177–200.

    Article  Google Scholar 

  • Louvat, P. and Allègre, C.J., 1997, Present denudation rates on the island of Réunion determined by river geochemistry: Basalt weathering and mass budget between chemical and mechanical erosions. Geochimica et Cosmochimica Acta, 61, 3645–3669.

    Article  Google Scholar 

  • Mackenzie, F.T., 2003, Our Changing Planet. Prentice Hall, Upper Saddle River, New Jersey, 580 p.

    Google Scholar 

  • Martin, C., 1987, Les mesures de l'érosion chimique et interprétation des résultats dans les petits bassins versants de roches cristallines: exemples pris dans le massif des Maures (Var, France). In: Processus et mesure de l'érosion. CNRS, p. 329–348. (in French)

  • McDowell, W.H. and Asbury, C.E., 1994, Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography, 39, 111–125.

    Article  Google Scholar 

  • Meybeck, M., 1986, Composition chimique des ruisseaux non pollués de France, Sciences Géologique (Bulletin), 39, 3–77, (in French).

    Google Scholar 

  • Millot, R., Gaillardet, J., Dupré, B. and Allègre, C.J., 2002, The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science Letters, 196, 83–98.

    Article  Google Scholar 

  • Négrel, P., Allègre, C.J., Dupré, B. and Lewin, E., 1993, Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth and Planetary Science Letters, 120, 59–76.

    Article  Google Scholar 

  • Ollier, C.D., 1991, Aspects of silcrete formation in Australia. Zeischrift Geomorphologie, 35, 151–163.

    Google Scholar 

  • Palmer, M.R. and Edmond, J.M., 1989, The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92, 11–26.

    Article  Google Scholar 

  • Palmer, M.R. and Edmond, J.M., 1992, Controls over the strontium isotope composition of river water. Geochimica et Cosmochimica Acta, 56, 2099–2111.

    Article  Google Scholar 

  • Pewe, T.L., 1975, Quaternary Geology of Alaska, U. S. Geological Survey Professional Paper, 835, 145 p.

  • Raymo, M.E. and Ruddiman, W.F., 1992, Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.

    Article  Google Scholar 

  • Sharp, M., Tranter, M., Brown, G.H. and Skidmore, M., 1995, Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment, Geology, 23, 61–64.

    Article  Google Scholar 

  • Stallard, R.F. and Edmond, J.M., 1983, Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  Google Scholar 

  • Thomas, M.F., 1994, Ages and geomorphic relationships of saprolite mantles. In: Robinson, D.A. and Williams, R.B.G. (eds.), Rock Weathering and Landform Evolution. John Wiley & Sons Ltd., New York, p. 287–301.

    Google Scholar 

  • Topp, S.E., Salbu, B., Roaldset, E. and Jorgensen, P., 1984, Vertical distribution of trace elements in lateritic soil. Chemical Geology, 47, 159–174.

    Article  Google Scholar 

  • Twidale, C.R., 1990, The origin and implications of some erosional landforms. Journal of Geology, 98, 343–364.

    Article  Google Scholar 

  • Vegas-Vilarrubia, T., Maass, M., Rull, V., Elias, V., Ramon, A., Ovalle, C., Lopez, D., Schneider, G., Depetris, P.J. and Douglas, I., 1994, Small catchment studies in the tropical zone. In: Moldan, B. and Cerny, J. (eds.), Biogeochemistry of Small Catchment: A Tool for Environmental Research. Wiley, U. K., p. 343–360.

    Google Scholar 

  • Viers, J., Dupré, B., Braun, J.-J., Deberdt, S., Angeletti, B., Ngoupayou, J.N. and Michard, A., 2000, Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology, 169, 211–241.

    Article  Google Scholar 

  • Vigier, N., Bourdon, B., Turner, S. and Allègre, C.J., 2001, Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters, 193, 549–563.

    Article  Google Scholar 

  • Vinogradov, V.I. and Leytes, A.M., 1987, Rb-Sr dating of the stages of granitization of the South Aldan Shield. In: Shukolyukov, Y.A., (ed.), Isotope Dating of Metamorphic and Metasomatic Processes, Nauka, Moscow, p. 103–115.

    Google Scholar 

  • Wadleigh, M.A., Veizer, J. and Brooks, C., 1985, Strontium and its isotopes in Canadian rivers: Fluxes and global implications. Geochimica et Cosmochimica Acta, 49, 1727–1736.

    Article  Google Scholar 

  • Walder, J. and Hallet, B., 1985, A theoretical model of the fracture of rock during freezing. Geological Society of America Bulletin, 96, 336–346.

    Article  Google Scholar 

  • Walker, J.C.G., Hays, P.B. and Kasting, J.F., 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research, 86, 9776–9782.

    Article  Google Scholar 

  • Wallmann, K., 2001, Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta, 65, 3005–3025.

    Article  Google Scholar 

  • Webster, P.J., 1994, The role of hydrological processes in oceanatmosphere interactions. Reviews of Geophysics, 32, 427–476.

    Article  Google Scholar 

  • Wedepohl, K.H., 1995, The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  Google Scholar 

  • White, A.F. and Blum, A.E., 1995, Effect of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59, 1729–1747.

    Article  Google Scholar 

  • White, A.F. and Brantley, S.L., 1995, Chemical Weathering Rates of Silicate Minerals. Reviews in Mineralogy, Volume 31, Mineralogical Society of America, Washington, D.C., 583 p.

    Google Scholar 

  • White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S. and Clow, D.W., 1999, The role of disseminated calcite in the chemical weathering of granitoid rocks, Geochimica et Cosmochimica Acta, 63, 1939–1953.

    Article  Google Scholar 

  • Wickman, F.E. and Åberg, G., 1987, Variations in the87Sr/86Sr ratio in lake waters from Central Sweden, Nordic Hydrology, 18, 21–32.

    Google Scholar 

  • Yang, C., Telmer, K. and Veizer, J., 1996, Chemical dynamics of the St. Lawrence riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34SSulfate, and dissolved87Sr/86Sr. Geochimica et Cosmochimica Acta, 60, 851–866.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, Y. Chemical weathering and climate — a global experiment: A review. Geosci J 7, 277–288 (2003). https://doi.org/10.1007/BF02910294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02910294

Key words

Navigation