Skip to main content
Log in

Threshold and compactification effects in GUTS

  • Beyond the Standard Model
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We review general results on threshold effects and their implications on GUTs in the context of LEP data. Among the blooming grand-desert models, threshold effects are computed in the presence of a single real scalar ζ (3, 0, 8) with Mζ≃1010 GeV leading to experimentally testable predictions on the proton lifetimeτ p in SU (5) and, in addition, small neutrino masses in SO (10) needed for the solar neutrino flux and the dark matter of the universe. The fine structure constant matching at MZ is ensured by including threshold effects on the unification coupling. In the minimal SUSY SU (5) such effects at the GUT scale modify the prediction of the supersymmetric mass threshold near the TeV scale and the precision measurments of the Standard Model couplings at MZ probe into the superheavy mass spectrum. Consequences of theorems proved very useful for threshold, compactification and multiloop effects are discussed. It is noted that in a class of GUTs the highest intermediate scale MI above which G224P becomes a good symmetry is not affected by the GUT threshold or compactification effects or multiloop contributions in the range MI-MU. But spontaneous compatification effects can decrease the intermediate scale drastically in models where parity and SU(2)R breakings are decoupled. Low mass WR-bsosns are permitted in models with decoupled parity and SU (2)R breakings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Amaldi et al, Phys. Lett.B281 (1992) 374.

    Google Scholar 

  2. P. Langacker and M. Luo, Phys. Rev.D44 (1991) 817.

    Article  ADS  Google Scholar 

  3. J. C. Pati, Proc. A. D. Sakharov Int. Conf. Moscow (1991).

  4. J. C. Pati, X High Energy Physics Symposium, Bombay (1992).

  5. J. Ellis, S. Kelly and D. V. Nanopolus, Phys. Lett.B260 (1991) 131.

    Google Scholar 

  6. N. G. Deshpande, K. Ellis and P. B. Pal, Phys. Rev.D46 (1992) 2261.

    Article  ADS  Google Scholar 

  7. R. N. Mohapatra and M. K. Parida, University of Maryland Report UMD-PP-92-179 (1992) (to appear in Phys. Rev.).

  8. M. L. Kynshi and M. K. Parida, NEHU/HEP/996 (1992).

  9. M. K. Parida and P. K. Patra, Phys. Rev. Lett.66 (1991) 858.

    Article  ADS  Google Scholar 

  10. M. K. Parida and P. K. Patra, Phys. Rev. Lett.68 (1992) 754.

    Article  ADS  Google Scholar 

  11. M. K. Parida and P. K. Patra, Phys. Rev.39 (1989) 2000.

    Article  ADS  Google Scholar 

  12. M. K. Parida and P. K. Patra, Phys. Lett.B234 (1990) 45.

    Google Scholar 

  13. L. J. Hall, Nucl. PhysB178 (1981) 75.

    Article  ADS  Google Scholar 

  14. S. Weinberg, Phys. Lett.B91 (1980) 51.

    Google Scholar 

  15. M. B. Einhorn and D. R. T. Jones, Nucl. Phys.B196 (1982) 475.

    Article  ADS  Google Scholar 

  16. H. Murayama and T. Yanagida, TU-370 (1991).

  17. T. G. Rizzo, ANL-HE-PR-91-92 (1991).

  18. R. Barbierri and L. J. Hall, Phy. Rev. Lett.68 (1992) 752.

    Article  ADS  Google Scholar 

  19. J. Hisano, H. Murayama and T. Yanagida, Phys. Rev. Lett.69 (1992) 1014.

    Article  ADS  Google Scholar 

  20. S. Dey and M. K. Parida, NEHU Report (1992, unpublished).

  21. P. Nath and R. Arnowitt, Erice School Lectures, 14–22 July (1992).

  22. M. K. Parida, P. K. Patra, M. L. Kynshi and M. Rani (1992, in preparation).

  23. D. Chang, R. N. Mohapatra and M. K. Parida, Phys. Rev. Lett.52 (1984) 1072; D. Chang, R. N. Mohapatra and M. K. Parida, Phys. Rev.D30 (1984) 1052.

    Article  ADS  Google Scholar 

  24. D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak and M. K. Parida, Phys. Rev.D31 (1985) 1718; D. Chang, R. N. Mohapatra, Phys. Rev.D32 (1985) 1248.

    Article  ADS  Google Scholar 

  25. M. K. Parida, Phys. Lett.B196 (1987) 163.

    Google Scholar 

  26. T. Appelquist, A. Chodos and P. G. O. Freund, Modern Kaluza-Klein Theories (1987) (Addison Wesley).

  27. K. Choi and J. E. Kim, Phys. Lett.B176 (1986) 103.

    Google Scholar 

  28. Q. Shafi and C. Wetterich, Phys. Rev. Lett.52 (1984) 857.

    ADS  Google Scholar 

  29. C. T. Hill, Phys. Lett.B135 (1984) 47.

    Google Scholar 

  30. M. K. Parida, P. K. Patra and A. K. Mahanty Phys. Rev.D39 (1989) 316.

    ADS  Google Scholar 

  31. B. Brahmachari et al., PRL-TH-7 (1992) (unpublished).

  32. P. K. Patra and M. K. Parida, Phys. Rev.D44 (1992) 2179.

    Google Scholar 

  33. V. S. Kaplunovsky, Nucl. Phys.B307 (1988) 145.

    Article  ADS  MathSciNet  Google Scholar 

  34. G. K. Leontaris and N. D. Tarcas, Phys. Lett.B291 (1992) 44.

    Google Scholar 

  35. R. N. Mohapatra, University of Maryland Report UMD-PP-92-190 (1992).

  36. V. Dixit and M. Sher, Phys. Lett.D40 (1989) 3765.

    Google Scholar 

  37. M. K. Parida, P. K. Patra and C. C. Hazra, Phys. Rev.D43 (1991) 2351.

    ADS  Google Scholar 

  38. J. C. Pati and A. S. Salam, Phys. Rev.D10 (1974) 275.

    ADS  Google Scholar 

  39. M. K. Parida and J. C. Pati, Phys. Lett.B145 (1984) 221.

    Google Scholar 

  40. M. K. Parida and M. Cvetic, VPI-HEP-8416 (1984) (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, M.K. Threshold and compactification effects in GUTS. Pramana - J. Phys. 41 (Suppl 1), 271–282 (1993). https://doi.org/10.1007/BF02908089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908089

Keywords

Navigation