Advertisement

Carlsberg Research Communications

, Volume 47, Issue 5, pp 285–289 | Cite as

The primary structure of noxiustoxin: A K+ channel blocking peptide, purified from the venom of the scorpion Centruroides noxius Hoffmann

  • Lourival Domingos Possani
  • Brian M. Martin
  • IB Svendsen
Article

Abstract

Noxiustoxin, component II-11 from the venom of scorpion Centruroides noxiusHoffmann, was obtained in pure form after fractionation by Sephadex G-50 chromatography followed by ion exchange separation on carboxy-methylcellulose columns (17). The primary structure of Noxiustoxin, a polypeptide 39 amino acid residues long was determined by automaticEdman degradation and chemical cleavage with cyanogen bromide followed by amino acid analysis of the two resulting peptides. Its sequence is: Thr−Ile−Ile−Asn−Val−Lys−Cys−Thr−Ser−Pro−Lys−Gln−Cys−Ser−Lys−Pro−Cys−Lys−Glu−Leu−Tyr−Gly−Ser−Ser−Ala−Gly−Ala−Lys−Cys−Met−Asn−Gly−Lys−Cys−Lys−Cys−Tyr−Asx−Asn, with a molecular weight of 4,184±6. No histidine, arginine, tryptophan or phenylalanine was found. Noxiustoxin is the first short toxin directed against mammals and the first K+ channel blocking polypeptide-toxin (4) found in scorpion venoms.

Keywords

Scorpion toxins Centruroides noxius Tityus serrulatus amino acid analysis amino acid sequence primary structure sequence homology 

References

  1. 1.
    Babin, D.R., D.D. Watt, S.M. Goos &R.V. Mlejnek: Amino acid sequences of neurotoxic protein variants from the venom ofCentruroides sculpturatus Ewing. Arch. Biochem. Biophys. 164, 694–706 (1974)PubMedCrossRefGoogle Scholar
  2. 2.
    Biedermann, K., U. Montali, B. Martin, I. Svendsen &M. Ottesen: The amino acid sequence of proteinase A inhibitor 3 from baker's yeast. Carlsberg Res. Commun. 45, 225–235 (1980)CrossRefGoogle Scholar
  3. 3.
    Cahalan, M.D.: Modification of sodium channel gating by scorpion venom. J. Physiol. London 244, 511–534 (1975)PubMedGoogle Scholar
  4. 4.
    Carbone, E., E. Wanke, G. Prestipino, L.D. Possani &A. Maelicke: Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature, London 296, 90–91 (1982)CrossRefGoogle Scholar
  5. 5.
    Carbone, E., G. Prestipino, E. Wanke, L.D. Possani & A. Maelicke: Selective action of scorpion neurotoxins on the ionic currents of the squid giant axon. Proceedings from the 7th World Congress on Animal, Plant and Microbial Toxins, Brisbane, Australia, July (1982) to be published by ToxiconGoogle Scholar
  6. 6.
    Catterall, W.A.: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 20, 15–43 (1980)CrossRefGoogle Scholar
  7. 7.
    Couraud, F., E. Jover, J.M. Dubois &H. Rochat: Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 9–16 (1982)PubMedCrossRefGoogle Scholar
  8. 8.
    Couraud, F., H. Rochat &S. Lissitzky: Binding of scorpion neurotoxins to chick embryonic heart cells in culture and relationship to calcium uptake and membrane potential. Biochemistry 19, 457–462 (1980)PubMedCrossRefGoogle Scholar
  9. 9.
    Edman, P. &G. Begg: A protein sequenator. Eur. J. Biochem. 1, 80–91 (1967)PubMedCrossRefGoogle Scholar
  10. 10.
    Gillespie, J.I. &H. Meves: The effect of scorpion venoms on the sodium currents of the squid giant axon. J. Physiol. London 308, 479–499 (1980)PubMedGoogle Scholar
  11. 11.
    Jover, E., F. Couraud &H. Rochat: Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607–1614 (1980)PubMedCrossRefGoogle Scholar
  12. 12.
    Kopeyan, C., G. Martinez, S. Lissitzky, F. Miranda &H. Rochat: Disulphide bonds of toxin II of the scorpionAndroctonus australis Hector. Eur. J. Biochem. 47, 483–489 (1974)PubMedCrossRefGoogle Scholar
  13. 13.
    Krueger, B.K., M. Blaustein &R.W. Ratzlaff: Sodium channels in presynaptic nerve terminals. Regulation by neurotoxin. J. Gen. Physiol. 76, 287–313 (1980)PubMedCrossRefGoogle Scholar
  14. 14.
    Martin, B., I. Svendsen &M. Ottesen: Use of carboxypeptidase Y for carboxy-terminal sequence determination in proteins. Carlsberg Res. Commun. 42, 99–102 (1977)CrossRefGoogle Scholar
  15. 15.
    Nonner, W.: Effects ofLeiurus scorpion venom on the “gating” current in myelinated nerve. Adv. in Cytopharmacol. 3, 345–352 (1979)Google Scholar
  16. 16.
    Penke, B., R. Ferenczi &K. Kovács: A new acid hydrolysis method for determining tryptophan in peptides and proteins. Anal. Biochem. 60, 45–50 (1974)PubMedCrossRefGoogle Scholar
  17. 17.
    Possani, L.D., M.A.R. Dent, B.M. Martin, A. Maelicke &I. Svendsen: The amino terminal sequence of several toxins from the venom of the Mexican scorpionCentruroides noxius Hoffmann. Carlsberg Res. Commun. 46, 207–214 (1981)CrossRefGoogle Scholar
  18. 18.
    Possani, L.D., B.M. Martin, J. Mochca-Morales &I. Svendsen: Purification and chemical characterization of the major toxins from the venom of the Brazilian scorpion Tityus serrulatus Lutz and Mello. Carlsberg Res. Commun. 46, 195–205 (1981)CrossRefGoogle Scholar
  19. 19.
    Reisfeld, R.A., U.J. Lewis &D.E. Williams: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature, London 195, 281–283 (1962)CrossRefGoogle Scholar
  20. 20.
    Rochat, H (ed.): Proceedings of the 4th European Symposium on Animal, Plant and Microbial Toxins. Marseille (France) June 1981, published in Toxicon, 20 (1) 1–367 (1982)Google Scholar
  21. 21.
    Rochat, H., P. Bernard &F. Couraud: Scorpion toxins: Chemistry and mode of action. Adv. Cytopharm. 3, 325–334 (1979)Google Scholar
  22. 22.
    Tarr, G.E., J.F. Beecher, M. Bell &D.J. McKean: Polyquaternary amines prevent peptide loss from sequenators. Anal. Biochem. 84, 622–627 (1978)PubMedCrossRefGoogle Scholar

Copyright information

© Carlsberg Laboratory 1982

Authors and Affiliations

  • Lourival Domingos Possani
    • 1
  • Brian M. Martin
    • 2
  • IB Svendsen
    • 3
  1. 1.Departamento de Biologia Molecular, Instituto de Investigaciones BiomédicasUNAMMéxicoMexico
  2. 2.Max-Planck-Institut für ErnährungsphysiologieDortmundFRG
  3. 3.Department of ChemistryCarlsberg LaboratoryCopenhagen Valby

Personalised recommendations