A thylakoid polypeptide involved in the reconstitution of photosynthetic oxygen evolution

  • Birger Lindberg Møller
  • Peter Bordier Høj


Sonication of barley thylakoids in a high salt buffer released three polypeptides of Mr 32,000, 23,000, and 13,500 which were purified to homogeneity by chromatofocusing.

Highly purified inside-out photosystem II preparations were obtained by French Press treatment or by Triton X-100 fractionation of stacked lamellar systems. Both preparations are composed of pairs of appressed membrane sheets. In the French Press preparation, the majority of these membrane pairs are sealed whereas they are predominantly unsealed in the Triton X-100 preparation. Both preparations are able to evolve oxygen and show reversed proton pumping. The oxygen evolving capacity and variable fluorescence of both preparations were lost upon washing with high salt buffer. This treatment also removed three polypeptides at Mr 32,000, 23,000, and 13,500. The inactivated preparations were reconstituted with respect to oxygen evolution and variable fluorescence by rebinding of the isolated Mr 23,000 polypeptide. The Mr 32,000 and 13,500 polypeptides had no effect on reconstitution.


Barley sonication chromatofocusing electron microscopy sodium dodecyl sulfate polyacrylamide gel electrophoresis variable fluorescence histones photosystem II inside-out vesicles Tris hydroxylamine 







dicyclohexyl carbodiimide




2,6-dichlorophenol indophenol


electron paramagnetic resonance


N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid






sodium dodecylsulfate polyacrylamide gel electrophoresis






tris-(hydroxymethyl)-amino methane


  1. 1.
    Albertsson, P.-Å.: Separation of particles and macromolecules by phase-partitioning. Endeavour 1, 69–74 (1977)CrossRefGoogle Scholar
  2. 2.
    Amesz, J.: The role of manganese in photosynthetic oxygen evolution. Biochim. Biophys. Acta. 726, 1–12 (1983)Google Scholar
  3. 3.
    Andersson, B., H.-E. Åkerlund &P.Å, Albertsson: Separation of subchloroplast membrane particles by counter-current distribution. Biochim. Biophys. Acta 423, 122–132 (1976)PubMedCrossRefGoogle Scholar
  4. 4.
    Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–14 (1949)PubMedGoogle Scholar
  5. 5.
    Bennoun, P., B.A. Diner, F.-A. Wollman, G. Schmidt &N.-H. Chua: Thylakoid polypeptides associated with photosystem II in Chlamydomonas reinhardtii: Comparison of system II mutants and particles. Photosynth., Proc. 5th Int. Congr. Volume 3, 839–849 (1981)Google Scholar
  6. 6.
    Berthold, D.A., G.T. Babcock &C.F. Yocum: A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron transport properties. FEBS Lett. 134, 231–234 (1981)CrossRefGoogle Scholar
  7. 7.
    Bishop, N.I. &G. Öquist: Correlation of the photosystem I and II reaction center chlorophyll-protein complexes, CP-aI and CP-aII, with photosystem activity and low temperature fluorescence emission properties in mutants of Scenedesmus. Physiol. Plant. 49, 477–486 (1980)CrossRefGoogle Scholar
  8. 8.
    Capaldi, R.A. &G. Vanderkooi: The low polarity of many membrane proteins. Proc. Natl. Acad. Sci. USA 69, 930–932 (1972)PubMedCrossRefGoogle Scholar
  9. 9.
    Cheniae, G.M. &I.F. Martin: Effects of hydroxylamine on photosystem II. I. Factors affecting the decay of O2 evolution. Plant Physiol. 47, 568–575 (1971)PubMedGoogle Scholar
  10. 10.
    Cheniae, G.M. &I.F. Martin: Studies on the mechanisms of Tris-induced inactivation of oxygen evolution. Biochim. Biophys. Acta. 502, 321–344 (1978)PubMedCrossRefGoogle Scholar
  11. 11.
    Davis, B.J.: Disc electrophoresis II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. pp. 404–427 (1964)Google Scholar
  12. 12.
    Dismukes, C.G. &Y. Siderer: Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc. Natl. Acad. Sci. USA 78, 274–278 (1981)PubMedCrossRefGoogle Scholar
  13. 13.
    Frasch, W.D. &G.M. Cheniae: Flash inactivation of oxygen evolution. Identification of S2 as the target of inactivation by Tris. Plant Physiol. 65, 735–745 (1980)PubMedGoogle Scholar
  14. 14.
    Gerola, P.D., E.M. Garlaschi, G. Forti &R.C. Jennings: Effects of cations on the adhesion between membrane vesicles obtained by digitonin fractionation of spinach chloroplasts. Biochim. Biophys, Acta. 679, 101–109 (1982)CrossRefGoogle Scholar
  15. 15.
    Ghanotakis, D. &G.T. Babcock: Hydroxylamine as an inhibitor between Z and P680 in photosystem II. FEBS Lett. 153, 231–234 (1983)CrossRefGoogle Scholar
  16. 16.
    Govinjee & R. Govinjee: Introduction to photosynthesis. In: Bioenergetics of Photosynthesis, Govinjee ed., Academic Press pp. 1–50 (1975)Google Scholar
  17. 17.
    Hauska, G.A., R.E. McCarty, R.J. Berzborn &F. Racker: Partial resolution of the enzymes catalyzing photophosphorylation. VII. The function of plastocyanin and its interaction with a specific antibody. J. Biol Chem. 246, 3524–3531 (1971)PubMedGoogle Scholar
  18. 18.
    Henry, L.E.A. &B.L. Møller: Polypeptide composition of an oxygen evolving photosystem II vesicle from spinach chloroplasts. Carlsberg Res. Commun. 46, 227–242 (1981)CrossRefGoogle Scholar
  19. 19.
    Henry, L.E.A., B.L. Møller, B. Andersson &H.-E. Åkerlund: Reactivation of photosynthetic oxygen evolution in Tris-inactivated inside-out photosystem II vesicles from spinach. Carlsberg Res. Commun. 47, 187–198 (1982)CrossRefGoogle Scholar
  20. 20.
    Henry, L.E.A., J.D. Mikkelsen &B.L. Møller: Pigment and acyl lipid composition of photosystem I and II vesicles and of photosynthetic mutants in barley. Carlsberg Res. Commun. 48, 131–148 (1983)CrossRefGoogle Scholar
  21. 21.
    Hiller, R.G., B.L. Møller &G. Høyer-Hansen: Characterization of six putative photosystem I mutants in barley. Carlsberg Res. Commun. 45, 315–328 (1980)CrossRefGoogle Scholar
  22. 22.
    Hind, H., Y. Nakatani &S. Izawa: The role of Cl in photosynthesis. I. The Cl requirement of electron transport. Biochim. Biophys. Acta 172, 277–289, (1969)PubMedCrossRefGoogle Scholar
  23. 23.
    Isoelectric focusing. Principles and Methods. Pharmacacia Fine Chemicals, Uppsala, Sweden (1982)Google Scholar
  24. 24.
    Johanningmeier, U., P.V. Sane, G. Høyer-Hansen &B.L. Møller: The inhibition of photosynthetic electron flow by N,N′-dicyclohexyl-carbodiimide (DCCD). Photosynth., Proc. 5th Int. Congr. Vol. II, 247–258 (1981)Google Scholar
  25. 25.
    Kahn, A. &D. von Wettstein: Macromolecular physiology of plastids. II. Structure of isolated spinach chloroplasts. J. Ultrastruct. Res. 5, 557–574 (1961)CrossRefGoogle Scholar
  26. 26.
    Katoh, S. &A. San Pietro: Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch. Biochem. Biophys. 122, 144–152 (1967)PubMedCrossRefGoogle Scholar
  27. 27.
    Katoh, S., I. Shiratori &A. Takamiya: Purification and some properties of spinach plastocyanin. J. Biochem. 51, 32–40 (1962)PubMedGoogle Scholar
  28. 28.
    Koenig, F. &B.L. Møller: Isolation and characterization of cytochromeb-559 from chloroplasts and etioplasts of barley. Carlsberg Res. Commun. 47, 245–262 (1982)Google Scholar
  29. 29.
    Kuwabara, T. & N. Murata: An improved purification method and a further characterization of the 33-kilodalton protein of spinach chloroplasts. Biochim. Biophys. Acta 210–215 (1982)Google Scholar
  30. 30.
    Kuwabara, T. &N. Murata: Inactivation of photosynthetic oxygen evolution and concomittant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol. 23, 533–539 (1982)Google Scholar
  31. 31.
    Machold, O., D.J. Simpson &B.L. Møller: Chlorophyll-proteins of thylakoids from wild-type and mutants of barley (Hordeum vulgare L.). Carlsberg Res. Commun. 44, 235–254 (1979)CrossRefGoogle Scholar
  32. 32.
    Mansfield, R.W. &J. Barber: EDTA-induced release of manganese and proteins from inside-out thylakoid vesicles and the inhibition of oxygen evolution. Biochem. Biophys. Res. Commun. 110, 545–551 (1983)PubMedCrossRefGoogle Scholar
  33. 33.
    Mattoo, A.K., J.B. Marder, J. Gressel &M. Edelman: Presence of the rapidly- labelled 32000-dalton chloroplast membrane protein in triazine resistant biotypes. FEBS Lett. 140, 36–40 (1982)CrossRefGoogle Scholar
  34. 34.
    Mattoo, A.K., U. Pick, H. Hoffman-Falk &M. Edelman: The rapidly metabolized 32,000 dalton polypeptide of the chloroplast is the “proteinaceous shield” regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc. Nat. Acad. Sci. USA 78, 1572–1576 (1981)PubMedCrossRefGoogle Scholar
  35. 35.
    Metz, J. &N.I. Bishop: Identification of a chloroplast membrane polypeptide associated with the oxidising side of photosystem II by the use of select low-fluoresent mutants of Scenedesmus. Biochem. Biophys. Res. Commun. 94, 560–566 (1980)PubMedCrossRefGoogle Scholar
  36. 36.
    Metz, J.G., J. Wong &N.I. Bishop: Changes in electrophoretic mobility of a chloroplast membrane polypeptide associated with the loss of the oxidizing side of photosystem II in low fluorescent mutants of Scenedesmus. FEBS Lett. 114, 61–66 (1980)CrossRefGoogle Scholar
  37. 37.
    Nadeau, P., D. Pallotta &J.-G. Lafontaine: Electrophoretic study of plant histones: comparison with vertebrate histones. Arch. Biochem. Biophys. Acta 161, 171–177 (1974)CrossRefGoogle Scholar
  38. 38.
    Nakatani, H. &J. Barber: Cholate extraction of a heme-protein from spinach thylakoids and its possible involvement in PS II oxygen evolution. Photobiochem. Photobiophys. 2, 69–78 (1981)Google Scholar
  39. 39.
    Pfister, K., K.E. Steinback, G. Gardner &C.J. Arntzen: Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. USA 78, 981–985 (1981)PubMedCrossRefGoogle Scholar
  40. 40.
    Radmer, R. &O. Ollinger: Nitrogen and oxygen evolution by hydroxylamine treated chloroplasts. FEBS Lett. 144, 162–166 (1982)CrossRefGoogle Scholar
  41. 41.
    Sauer, K.: A role for Mn in O2 evolution in photosynthesis. Acc. Chem. Res. 13, 249–256 (1980)CrossRefGoogle Scholar
  42. 42.
    Sayre, R. &G. Cheniae: Thylakoid polypeptide composition and manganese binding and their relation to oxygen evolution. Photosynth., Proc. 5th Int. Congr. Volume 2, 473–485 (1981)Google Scholar
  43. 43.
    Sayre, R.T. &G.M. Cheniae: Studies on the reconstitution of O2-evolution of chloroplasts. Plant Physiol. 69, 1084–1095 (1982)PubMedGoogle Scholar
  44. 44.
    Simpson, D.J. &D. von Wettstein: Macromolecular physiology of plastids. XIV. Viridis mutants in barley: Genetic, fluoscopic, and ultrastructural characterization. Carlsberg Res. Commun. 45, 283–314 (1980)CrossRefGoogle Scholar
  45. 45.
    Spector, M. &G.D. Winget: Purification of a manganese containing protein involved in photosynthetic oxygen evolution and its use in reconstituting an active membrane. Proc. Natl. Acad. Sci. USA 77, 957–959 (1980)PubMedCrossRefGoogle Scholar
  46. 46.
    Stewart, A.C. &D.S. Bendall: Properties of oxygen-evolving photosystem II particles from Phormidium laminosum, a thermophilic blue-green algae. Biochem. J. 194, 877–887 (1981)PubMedGoogle Scholar
  47. 47.
    Toyoshima, Y. &E. Fukutaka: A protein essential for recovering oxygen evolution in cholate-treated chloroplasts. FEBS Lett. 150, 223–227 (1982)CrossRefGoogle Scholar
  48. 48.
    Wangh, L., A. Ruiz-Carrillo &V.G. Allfrey: Separation and analysis of histone subfractions differing in their degree of acetylation: Some correlations with genetic activity in development. Arch. Biochem. Biophys. 150, 44–56 (1972)PubMedCrossRefGoogle Scholar
  49. 49.
    Wettstein, D. von, B.L. Møller, L.E.A. Henry, F. Koenig, G. Høyer-Hansen &C. Poulsen: Polypeptides associated with the oxygen evolving system. In: Proc. E.C. Contractors Meeting, Brussels 1982, D.O. Hall & W. Palz eds., Riedel Dordrecht, Boston/London, 148–154 (1983)Google Scholar
  50. 50.
    Yamamoto, Y., S. Shimada &M. Nishimura: Purification and molecular properties of three polypeptides released from a highly active O2-evolving photosystem-II preparation by Tris-treatment. FEBS Lett. 151, 49–53 (1983)CrossRefGoogle Scholar
  51. 51.
    Yamashita, T. &W.L. Butler: Inhibition of the Hill reaction by Tris and restoration by electron donation to photosystem II. Plant Physiol. 44, 435–438 (1969)PubMedCrossRefGoogle Scholar
  52. 52.
    Zurawski, G., H.J. Bohnert, P.R. Whitfield &W. Bottomley: Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950. Proc. Natl. Acad. Sci. USA 79, 7699–7703 (1982)PubMedCrossRefGoogle Scholar
  53. 53.
    Åkerlund, H.-E.: Partial reconstitution of the photosynthetic water splitting in inside out thylakoid vesicles. Photosynth., Proc. 5th Int. Congr. Vol. II, 465–472.Google Scholar
  54. 54.
    Åkerlund, H.-E., B. Andersson &P.-Å. Albertsson: Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partitioning. Biochim. Biophys. Acta 449, 525–535 (1976)PubMedCrossRefGoogle Scholar
  55. 55.
    Åkerlund, H.-E., C. Jansson &B. Andersson: Reconstitution of photosynthetic water splitting in inside-out thylakoid vesicles and identification of a participating polypeptide. Biochim. Biophys. Acta 681, 1–10 (1982)CrossRefGoogle Scholar

Copyright information

© Carlsberg Laboratory 1983

Authors and Affiliations

  • Birger Lindberg Møller
    • 1
  • Peter Bordier Høj
    • 1
    • 2
  1. 1.Department of PhysiologyCarlsberg LaboratoryCopenhagen Valby
  2. 2.Institute of GeneticsUniversity of CopenhagenCopenhagen K

Personalised recommendations