Skip to main content
Log in

Determination of sin2 θ effw using jet charge measurements in hadronic Z decays

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

The electroweak mixing angle is determined with high precision from measurements of the mean difference between forward and backward hemisphere charges in hadronic decays of the Z. A data sample of 2.5 million hadronic Z decays recorded over the period 1990 to 1994 in the ALEPH detector at LEP is used. The mean charge separation between event hemispheres containing the original quark and antiquark is measured for\(b\bar b\) and\(c\bar c\) events in subsamples selected by their long lifetimes or using fastD*’s. The corresponding average charge separation for light quarks is measured in an inclusive sample from the anticorrelation between charges of opposite hemispheres and agrees with predictions of hadronisation models with a precision of 2%. It is shown that differences between light quark charge separations and the measured average can be determined using hadronisation models, with systematic uncertainties constrained by measurements of inclusive production of kaons, protons andΛ’s. The separations are used to measure the electroweak mixing angle precisely as sin2 ϑ effw =0.2322±0.0008(exp.stat.) ±0.0007(exp.syst.)±0.0008(sep.). The first two errors are due to purely experimental sources whereas the third stems from uncertainties in the quark charge separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Field and R.P. Feynman, Nucl. Phys. B136 (1978) 1.

    Article  ADS  Google Scholar 

  2. J.P. Berge et al., Nucl. Phys. B184 (1981) 13;

    Article  ADS  Google Scholar 

  3. J.-P. Albanese et al., (EMC Coll.) Phys. Lett. B144 (1984) 302.

    Article  ADS  Google Scholar 

  4. ALEPH Collaboration, D. Decamp et al., Phys. Lett. B259 (1991) 377.

    Article  ADS  Google Scholar 

  5. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B277 (1992) 231.

    Article  ADS  Google Scholar 

  6. OPAL Collaboration, P.D. Acton et al., Phys. Lett. B294 (1992) 436.

    Article  ADS  Google Scholar 

  7. ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B335 (1994) 99.

    Article  ADS  Google Scholar 

  8. OPAL Collaboration, R. Akers et al., Z. Phys. C67 (1995) 365.

    ADS  Google Scholar 

  9. DELPHI Collaboration, P. Abreu et al., Z. Phys. C65 (1995) 569.

    ADS  Google Scholar 

  10. ALEPH Collaboration, D. Decamp et al., Phys. Lett. B284 (1992) 177.

    ADS  Google Scholar 

  11. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B322 (1994) 459.

    Article  ADS  Google Scholar 

  12. ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B356 (1995) 409;

    Article  ADS  Google Scholar 

  13. ALEPH Collaboration, D. Buskulic et al., CERN-PPE/96-030, submitted to Phy. Lett. B;

  14. ALEPH Collaboration, D. Buskulic et al., “B 0 d Mixing with Jet Charge and Lepton Correlations,” submitted to HEP95, EPS 0409, 27 July– 2 August, 1995, Brussels, Belgium.

  15. OPAL Collaboration, R. Akers et al., Phys. Lett. B327 (1994) 411.

    Article  ADS  Google Scholar 

  16. DELPHI Collaboration, P. Abreu et al., CERN-PPE/96-006, submitted to Z. Phys. C.

  17. D. Bardin et al, CERN TH 6443-92, (1992).

  18. The LEP Collaborations, Phys. Lett. B276 (1992) 267.

    Google Scholar 

  19. G.Batignani et al., Conf. Record of the 1991 IEEE Nuclear Science Symp., (November 1991, Santa Fe, NM, USA), IEEE Trans. on Nuclear Science v.NS 39(4–5), Aug. and Oct. 1992, Vol. 1, 438; ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B313 (1993) 535.

  20. T. Sjöstrand, Comp. Phys. Comm. 82 (1994) 74;

    Article  ADS  Google Scholar 

  21. B.R. Webber, Nucl. Phys. B 234 (1984) 492;

    Article  ADS  Google Scholar 

  22. G. Marchesini et al., Comp. Phys. Comm. 67 (1992) 465.

    Article  ADS  Google Scholar 

  23. ALEPH Collaboration, D. Decamp et al., Nucl. Inst. Meth. A286 (1990) 121.

    Article  ADS  Google Scholar 

  24. ALEPH Collaboration, D. Buskulic et al., Nucl. Instr. Meth. A 360 (1995) 481.

    Article  ADS  Google Scholar 

  25. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C62 (1994) 179.

    ADS  Google Scholar 

  26. J. E. Campagne and R. Zitoun, Z. Phys. C43 (1989) 469.

    ADS  Google Scholar 

  27. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 55 (1992) 209. Data have been updated with events collected through 1992.

    ADS  Google Scholar 

  28. W.B. Atwood et al., Nucl. Inst. Meth., A306 (1991) 446.

    Article  ADS  Google Scholar 

  29. ALEPH Collaboration, D. Decamp et al., Phys. Lett. B231 (1989) 519.

    Article  ADS  Google Scholar 

  30. ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B352 (1995) 479.

    Article  ADS  Google Scholar 

  31. C. Peterson et al., Phys. Rev. D 27 (1983) 105.

    ADS  Google Scholar 

  32. K. Hikasa et al., Review of Particle Properties, Phys. Rev. D45 (1992).

  33. M. Gell-Mann, Phys. Rev.92 (1953) 833;

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Nishijima and T. Nakano, Prog. Th. Phys.10 (1953) 581.

    Article  ADS  Google Scholar 

  35. B. Andersson, et. al., Physica Scripta 32 (1985) 574.

    Article  ADS  Google Scholar 

  36. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 64 (1994) 361.

    ADS  Google Scholar 

  37. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 66 (1995) 355.

    ADS  Google Scholar 

  38. DELPHI Collaboration, P. Abreu et al., Z. Phys. C 65 (1995) 587.

    ADS  Google Scholar 

  39. OPAL Collaboration, P. Acton et al., Z. Phys. C 56 (1992) 521.

    ADS  Google Scholar 

  40. ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B292 (1992) 210.

    Article  ADS  Google Scholar 

  41. A. Djouadi et al, Z. Phys. C67 (1995) 123.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Additional information

Supported by Dirección General de Investigación Científica y Técnica, Spain

Supported by the Commission of the European Communities, contract ERBCHBICT941234

Supported by CICYT, Spain

Supported by the National Science Foundation of China

Supported by the Danish Natural Science Research Council

Supported by the UK Particle Physics and Astronomy Research Council

Supported by the US Department of Energy, grant DE-FG0295-ER40896

Supported by the US Department of Energy, contract DE-FG05-92ER40742

Supported by the US Department of Energy, contract DE-FC05-85ER250000

Supported by the Bundesministerium für Forschung und Technologie, Germany

Supported by the Direction des Sciences de la Matière, C.E.A.

Supported by Fonds zur Förderung der wissenschaftlichen Forschung, Austria

Supported by the US Department of Energy, grant DE-FG03-92ER40689

Partially supported by Colciencias, Colombia

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALEPH Collaboration., Buskulic, D., De Bonis, I. et al. Determination of sin2 θ effw using jet charge measurements in hadronic Z decays. Z. Phys. C - Particles and Fields 71, 357–378 (1996). https://doi.org/10.1007/BF02906996

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02906996

Keywords

Navigation