Skip to main content
Log in

Contribution of computational mechanics in numerical simulation of machining and blanking: State-of-the-Art

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Blanking and machining are commonly used in processes to obtain the shape of many mechanical pieces. Although considerable number of experimental results exist, certain essential aspects of cutting are still not well understood. This comes from the complexity of the thermomechanical phenomena induced by the material separation as well as from the complexity of the dynamical behaviour of the whole workpiece/tool/machine system. Numerical simulations make it possible to go further in the comprehension and the prediction of machining and cutting processes.

In this work the state-of-the art is analysed and we present the most recent developments in the contribution of computational mechanics to numerical simulation of machining and blanking. This contribution is, on one hand, developed at a very global scale calledmacroscopic scale. At this scale a representation of the deformations of the piece is necessary, for example when thin walls are present, and when both predictions of the geometrical state of final surface and/or stability of the process are expected. On the other hand, the contribution is also located at a more local scale: themesoscopic scale. At this scale, the aim is the determination of thermomechanical sollicitations applied to the tool, the simulation of chip formation, or the description of residual states (mechanical, chemical) inside the workpiece after machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.maline.com/cutpro/.

  2. AdvantedgeTM.

  3. M. Touratier (1998). Computational models of chip formation in machining in a multi-scale approach. Present status and future needs. Technical Report, LM2S-Report, ENSAM Paris.

    Google Scholar 

  4. S. Jayarama, S. Kapoor and R.E. DeVor (2001). Estimation of the specific cutting pressures for mechanistic cutting force models.Int. J. Machine Tools, and Manufacture,41 (2), 265–281.

    Article  Google Scholar 

  5. F. Atabey, I. Lazoglu and Y. Altintas. Mechanics of boring processes—Part I (2003)Int. J. Machine Tools and Manufacture,43 (5), 463–476.

    Article  Google Scholar 

  6. H.E. Merritt (1965). Theory of self-excited machine tool chatter—resarch i.J. Engineering for Industry,17, 447–454.

    Google Scholar 

  7. F. Ismail and E. Soliman (1997). A new method for the identification of stability lobes in machining. Int. J. Machine Tools, and Manufacture,37 (6), 763–774.

    Article  Google Scholar 

  8. F. Abrari, M.A. Elbestawi and A.D. Spence (1998). On the dynamics of ball end milling: modeling of cutting forces and stability analysis.Int. J. Machine Tools, and Manufacture,38, 215–237.

    Article  Google Scholar 

  9. E. Budak and Y. Altintas (1998). Analytical prediction of chatter stability in milling-parti: General formulation.ASME Trans.—J. of Dynamic Systems. Measurement and Control,120, 22–30, March.

    Article  Google Scholar 

  10. E. Budak and Y. Altintas (1998). Analytical prediction of chatter stability in milling-partii: Application of the general formulation to common milling systems.ASME Trans.-J. of Dynamic Systems, Measurement and Control,120, 31–36, March.

    Article  Google Scholar 

  11. M.P. Volger, R.E. DeVor and S.G. Kapoor (2001). Nonlinear influence of effective lead angle in turning process stability.J. of Manufacturing Science and Engineering,124, 473–475.

    Google Scholar 

  12. Y. Altintas, S. Engin and E. Budak (1999) Analytical stability prediction and design of variable pitch cutters.J. of Manufacturing Science and Engineering,121, 173–178, May.

    Article  Google Scholar 

  13. F. Lapujoulade (2003),Simulation des phénomènes vibratoires intervenant en usinage. PhD thesis, INSA Lyon et Université Claude Bernard Lyon I.

  14. S. Eugin and Y. Altintas (2001). Mechanics and dynamics of general milling cutters. Part I: helical end mills.Int. J. Machine Tools, and Manufacture,41, 2195–2212.

    Article  Google Scholar 

  15. S. Engin and Y. Altintas (2001). Mechanics and dynamics of general milling cutters. Part II: inserted cutters.Int. J. Machine Tools, and Manufacture,41, 2213–2231.

    Article  Google Scholar 

  16. A. Grefio (2000). Calcul par ééments finis d'un banc d'essai. InPremières Assises Machines et Usinage à Grande Vitesse, March.

  17. Y. Altintas (2000). Modelling approaches and software for predicting the performance of milling operations at mal-ubc. InCIRP 2000 Machining Workshop.

  18. J. Gradišek, M. Kalveram, T. Insperger, K. Weinert, G. Stépán, E. Govekar and I. Grabec (2004). On stability prediction for low radial immersion milling. In A. Moisau and G. Poulachon (Eds.), 7th CIRP International Workshop on Modeling of Machining Operations, pp. 227–233.

  19. D. Montgomery and Y. Altintas (1991). Mechanism of cutting force and surface generation in dynamic milling.J of Engineering for Industry,113, 160–168, May.

    Article  Google Scholar 

  20. G. Coffignal, E. Beauchesne, K. Dekelba and N. Hakem (1996). Mechanical simulation of machining using cutting tools. In1st International Conference-IDMME'96, Volume 1, pp. 145–154.

  21. A. Marty, P. Lorong and G. Coffignal (2000). Numerical simulation of a turning operation. InII International Seminar on Improving Machine Tool Performance, La Baule de Nantes de France, July.

  22. S. Assouline, E. Beauchesne, G. Coffignal, P. Lorong and A. Marty (2002). Simulation numérique de l'usinage à l'échelle macroscopique: modèles dynamiques de la pièce.Mécanique et Industrie,3, 389–402.

    Article  Google Scholar 

  23. F. Lapujoulade, T. Mabrouki, and K. Raissi (2002). Prédiction du comportement vibratoire du fraisage latéral de finition des piéces à parois minces.Mécanique et Industries,3, 403–418.

    Article  Google Scholar 

  24. T. Van Hook (1986). Real-time shaded nc milling display. InSIGGRAPH'86, pp. 15–35.

  25. G.M. Kim, P.J. Cho and C.N. Chu (2000). Cutting force prediction for scultured surface ball-end milling using z-map.Int. J. Machine Tools, and Manufacture,40, 277–291.

    Article  Google Scholar 

  26. Y. Mizugaki, M. Hao and K. Kikkawa (2001). Geometric generating mechanism of machined surface by ball-nosed end milling. InAnnals of the CIRP, Volume 50.

  27. S. Ratchev, S. Liu, W. Huang and A.A. Becker (2004). Milling error prediction and compensation in machining of low-rigidity parts.Int. J. Machine Tools, and Manufacture,44, 1629–1641.

    Article  Google Scholar 

  28. K. Weinert and A. Zabel (2004). Simulation based tool wear prediction in milling of sculptured surfaces.Annals of the CIRP,53, 217–223.

    Google Scholar 

  29. W.M.M. Ng and S.T. Tan (2000). Incremental tessellation of trimmed parametric surfaces.Computer Aided Design,32(4), 279–294.

    Article  Google Scholar 

  30. R. Radulescu, S.G. Kapoor and R.E. DeVor (1993). An investigation of variable spindle speed face milling for tool-work structures with complex dynamics: Part 1-simulation results. J. of Manufacturing Science and Engineering,64, 603–614.

    Google Scholar 

  31. R. Radulescu, S.G. Kapoor and R.E. DeVor (1993). An investigation of variable spindle speed face milling for tool-work structures with complex dynamics: Part 2-physical explanation.J. of Manufacturing Science and Engineering,64, 615–627.

    Google Scholar 

  32. Khaled Dekelbab (1995).Modélisation et simulation du comportement dynamique de l'ensemble Pièce-Outil-Machine en usinage par outil coupant. PhD thesis, Ecole Nationale Supérieure d'Arts et Métiers-CER de Paris.

  33. K. Mehdi, J.-F. Rigal and D. Play (2002). Dynamic behavior of a thin-walled cylindrical workpiece during the turning process, Part 2: experimental approach and validation.J. of Manufacturing Science and Engineering,124, 569–580.

    Article  Google Scholar 

  34. B.K. Choi and R.B. Jerard (1998).Sculptured surface machining. Kluwer Academic Publishers.

  35. K.J. Bathe (1996).Finite Element Procedures. Prentice-Hall.

  36. M. Géradin and D. Rixen (1996).Théorie des vibrations. Application à la dynamique des structures. Masson.

  37. S.P.F.C. Jaspers and J.H. Dautzenberg (2002). Material behaviour in metal cuttingl: strains, stain rates and temperatures in chip formation.J. Material Processing Technology,121, 123–135.

    Article  Google Scholar 

  38. J.-D. Kim and C.-H. Moon (1996) A study on microcutting for the configuration of tools using molecular dynamics.J. Material Processing Technology,59, 309–314.

    Article  Google Scholar 

  39. R.G. Rentsch (2004). Molecular dynamics simulation of microscopic phenomena in cutting and forming processes. InESAFORM, pp. 93–96, Trondheim, Norway, April 28–30.

  40. H. Hernst (1938). Physics of metal cutting.Machining of Metals—American Society for Metals, page 24.

  41. H. Hernst and M.E. Merchant (1941). Chip formation, friction and high quality machined surfaces.Trans. American Society for Metals,29, 299–378.

    Google Scholar 

  42. M.E. Merchant (1945). Mechanics of the metal cutting process: I. Orthogonale cutting and type 2 chip.Journal of Applied Physics,16, 267–275.

    Article  Google Scholar 

  43. N. Fang, I.S. Jawahir and P.L.B. Oxley (2001). A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool.Int. J. Mech. Sci.,43, 557–580.

    Article  MATH  Google Scholar 

  44. A. Molinari and A. Moufki (2005). A new thermomechanical model of cutting applied to turning operations. part i. theory.Int. J. Machine Tools. and Manufacture,45, 166–180.

    Article  Google Scholar 

  45. A. Moufki and A. Molinari (2005). A new thermomechanical model of cutting applied to turning operations. part ii. parametric study.Int. J. Machine Tools, and Manufacture,45, 181–193.

    Article  Google Scholar 

  46. A. Moufki, A. Devillez, D. Dudzinski and A. Molinari (2004). Thermomechanical modelling of oblique cutting and experimental validation.Int. J. Machine Tools, and Manufacture,44, 971–989.

    Article  Google Scholar 

  47. Y.K. Chou and H. Song (2005). Thermal modeling for white layer predictions in finish hard turning.Int. J. Machine Tools, and Manufacture,45, 481–495.

    Article  Google Scholar 

  48. S.-L. Ko and A. Dornfeld (1996). Burr formation and fracture in oblique cutting.J. of Material Processing Technology,62, 24–36.

    Article  Google Scholar 

  49. V.R. Marinov (2001). Hybrid analytical-numerical solution for the shear angle in orthogonal metal cutting—part i: theoretical foundation.Int. J. Mech. Sci.,43, 399–414.

    Article  MATH  Google Scholar 

  50. K. Okushima and Y. Kakino (1971). The residual stress produced by metal cutting.Annals of the CIRP,20(1), 13.

    Google Scholar 

  51. A.O. Tay, M.G. Stevenson and G.D. Davis (1974). Using finite element method to determine the temperature distribution in orthogonal in orthogonal machining.Proceedings of Institute of Mechanical Engineers,188, 627.

    Article  Google Scholar 

  52. M.G. Stevenson, P.K. Wright and J.G. Chow (1983). Further developments in applying finite element technique to the calculation of temperature distribution in machining and compressions with experiment.ASME Journal of Engineering for Industry,105, 149–154.

    Google Scholar 

  53. R. Natarajan and S. Jeelani (1983). Residual stresses in machining using finite element method.Computer in Engineering, Computer Software Applications,3, 79–80.

    Google Scholar 

  54. K.F. Ehmann, S.G. Kapoor, R.E. DeVor and I. Lazoglu (1997). Machining process modeling: A review.J. of Manufacturing Science and Engineering,119, 655–663.

    Article  Google Scholar 

  55. J. Mackerle (1999). Finite-element analysis and simulation of machining: a bibliography (1976–1996).J. of Material Processing Technology,86, 17–44.

    Article  Google Scholar 

  56. G.R. Johnson and W.H. Cook (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. InProceedings of the 7 th International Symposium on Ballistics, pp. 541–547, The Hague, Holland, April.

  57. T. Ozel and E. Zeren (2004). Determination of material work flow stress and friction for fef of machining using orthogona cutting tests.J. Proc. Tec.,153–154, 1019–1025.

    Article  Google Scholar 

  58. D. Steinberg, S. Cochram and M. Guinan (1980). A constitutive model for metals applicable at high-strain rate.J. of Applied Physics,51 (3), 1498–1504.

    Article  Google Scholar 

  59. W.K. Rule and S. Jones (1998). A revised form for the johnson-cook strength model.Int. J. of Impact Engng,21(8), 609–624.

    Article  Google Scholar 

  60. G.R. Johnson and W.H. Cook (1985). Fracture caracteristics of three metals subjected to various strains, strain rates, temperatures and pressure.Engineering Fracture Mechanics,21, (1), 31–48.

    Article  Google Scholar 

  61. Z.-C. Lin and S.Y. Lin (1992). A coupled finite element model thermo-clastic-plastic large deformation for orthogonal cutting.J. of Engineering Mater. and Technol. 114, 218–226.

    Article  Google Scholar 

  62. T. Shirakashi, K. Maekawa and E. Usui (1993). Flow stress of low carbon steel and high temperature and strain rate.J. of Jap. Society for Production Engng,17, 167–172.

    Google Scholar 

  63. Z.-C. Lin and Y.-Y. Lin (1999). Fundamental modeling for oblique cutting by thermo-elastic-plastic fem.Int. J. Mech. Sci.,41, 941–965.

    Article  MATH  Google Scholar 

  64. A.G. Mamalis, M. Horváth, A.S. Branis and D.E. Manolakos (2001). Finite element simulation of chip formation in othogonal metal cutting.J. of Material Processing Technology, 110, 12–27.

    Google Scholar 

  65. Y.-C. Yen, A. Jain and T. Altan (2004). A finite element analysis of orthogonal machining using different tool edge geometries.J. of Material Processing Technology,146, 72–81.

    Article  Google Scholar 

  66. J.S. Wu, O.W. Dillon and W.Y. Lu (1996). Thermo-viscoplastic modeling of machining process using a mixed finite element method.J. of Manufacturing Science and Engineering,118, 470–482.

    Article  Google Scholar 

  67. D.-C. Ko, S.-L. Ko and B.-M. Kim (2002). Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting.J. of Material Processing Technology,130–131, 345–350.

    Article  Google Scholar 

  68. J. Lemonds and A. Needleman (1986). Finite element analysis of shear localization in rate and temperature dependent solids.Mechanics of Materials,5, 339–361.

    Article  Google Scholar 

  69. T.D. Marusich and M. Ortiz (1995). Modelling and simulation of high-speed machining.Int. J. Numer. Meth. in Engng,38, 3675–3694.

    Article  MATH  Google Scholar 

  70. S. Lei, Y.C. Shin and F.P. Incorpera (1997). Material constitutive modeling under high strain rates and temperatures through orthogonal machining tests. InProceedings of Manufacturing Science and Engineering. ASME IMECE, MED, Volume6-2, pp. 91–98.

  71. S. Lei, Y.C. Shin and F.P. Incorpera (1999). Thermo-mechanical modelling of orthogonal machining process by finite element analysis.Int J. Machine Tools, and Manufacture,39, (15), 731–750, May.

    Article  Google Scholar 

  72. J. Söder and T. Altan (2001). Material database for manufacturing simulation (madams): Summary of the activities and flow stress database. ERC for Net Shape Manufactureing HPM/ERC/NSM-01-R-76, Ohio State University.

  73. Firas Ali (2001),Modélisation et simulation thermomécaniques de la coupe des métaux. PhD thesis, Ecole Nationale Supérieure d'Arts et Métiers-CER de Paris, Juillet.

  74. J.S. Strenkowski and J.T. Carroll (1986). An orthogonal metal cutting model based on an eulerian finite element method. InManufacturing Processes, Machines and Systems, Proceedings of the 13th NSF Conference on Production Research an Technology.

  75. D.J. Benson and S. Okazawa (2004). Simulations of high-speed machining using a multimaterial finite element formulation. In S. Ghosh, J.C. Castro, and J.K. Lee (Eds.),NUMI-FORM, Material Processing and Design: Modeling, Simulation and Applications, pp. 1341–1346.

  76. J.T. Carroll and J.S. Strenkowski (1988). Finite element models of orthogonal cutting with application to single point diamond turning.Int. J. Mech. Sci.,30, 899–920.

    Article  Google Scholar 

  77. R.A. Riddle (1987). The effect of the failure criterion in the mumerical modeling of orthogonal metal cutting. Technical Report UCRL-93745, Lawrence Livermore Report.

  78. H.T.Y. Yang, M. Heinstein and A.J.M. Shih (1989). Adaptative 2d finite element simulation of metal forming processes.Int. J. Numer. Meth. in Engng,28, 1409–1428.

    Article  MATH  Google Scholar 

  79. K. Komvopoules and S.A. Erpenbeck (1991). Finite element modeling of orthogonal metal cutting.ASME Journal of Engineering for Industry,113, 253–267.

    Google Scholar 

  80. S.F. Wayne, C. Simmerman and D.A. Oniel (1993). Aspects of advanced cutting tool and chip-flow modeling. In H. Bildstein and R. Eck, editors,Procedings of the 13 th International Plansee Seminar, Volume 2, page 64 Metalwerk Plansee, Rentte.

    Google Scholar 

  81. A.J. Shih (1996). Finite element analysis of orthogonal metal cutting mechanics.Int. J. Machine Tools, and Manufacture,36 (2), 255–273.

    Article  Google Scholar 

  82. M. Baker, J. Rosler, and C. Siemers (2002). A finite element model of high speed metal cutting with adiabatic shearing.Comp. and Struc.,80, 495–513.

    Article  Google Scholar 

  83. H. Sasahara, T. Obikawa and T. Shirakashi (2004). Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models.Int. J. Machine Tools. and Manufacture,44, 815–822.

    Article  Google Scholar 

  84. L.-J. Xie, J. Schmidt, C. Schmidt and F. Biesinger (2005). 2d fem estimate of tool wear in turning operation.Wear,258, 1479–1490.

    Article  Google Scholar 

  85. G. Camacho, T. Marusich and M. Ortiz (1996). Adaptative meshing methods for the analysis of unconstrained plastic flow.Advanced Computational Methods for Material Modeling,268, 71–83.

    Google Scholar 

  86. E. Ceretti, M. Lucchi and T. Altan (1999). FEM simulation of orthogonal cutting: serrated chip formation.J. of Material Processing Technology,95:17–26.

    Article  Google Scholar 

  87. Y. B. Guo and D. W. Yen (2004). A fem study on mechanisms of discontinuous chip formation in hard machining.J. of Material Processing Technology,155–156, 1350–1356.

    Article  Google Scholar 

  88. O. Pantalé, J.-L. Bacaria, O. Dalverny, R. Rakotomalala and S. Caperaa (2004). 2d and 3d numerical models of metal cutting with damage effects.Comp. Meth. Applied Mech. and Eng.,193, 4383–4399.

    Article  MATH  Google Scholar 

  89. M. Barge, H. Hamdi, J. Rech and J-M. Bergheau (2005). Numerical modelling of orthogonal cutting: influence of numerical parameters.J. of Material Processing Technology. in press.

  90. Deform 3d user manual, 1997.

  91. E. Ceretti, C. Lazzaroni, L. Menegardo and T. Altan (2000). Turning simulations using a three-dimensional FEM code.J. of Material Processing Technology,98, 99–103.

    Article  Google Scholar 

  92. R. Rokotomalala, P. Joyot and M. Touratier (1993). Arbitrary lagrangian-eulerian thermome-chanical finite element model of material cutting.Communication in Numerical Methods in Engineering,9, 975–987.

    Article  Google Scholar 

  93. L. Olovsson, L. Nilsson and K. Simonsson (1999). An ALE formulation for the solution of two-dimensional metal cutting problems.Comp. and Struc.,72, 497–507.

    Article  MATH  Google Scholar 

  94. M. Baker (2004). Finite element investigation of the flow stress dependence of chip formation.J. of Material Processing Technology.

  95. M. Baker, J. Rosler and C. Siemers (2003). The influence of thermal conductivity on segmented chip formation.Computational materials Science,26, 175–182.

    Article  Google Scholar 

  96. ABAQUS.Abaqus/Explicit User's Manual, HKS Inc., 1997.

  97. ABAQUS.ABAQUS/Standard User's Manual. HKS Inc., 1997.

  98. LS Dyna.Ls-dyna theorical Manual. L.S.T. Corporation California, USA, 1997.

    Google Scholar 

  99. Halil Gil, S. Engin Engin Kilic, and A. Ermai Tekkaya (2004). A comparison of orthogona cutting data from experiments with three ditherent finite element models.Int. J. Machini Tools, and Manufacture,44, 933–944.

    Article  Google Scholar 

  100. E. Fratini, A. Lombardo and F. Micari (1996). Material characterization for the prediction of ductile fracture occurrence: an inverse approach.Journal of Materials Processing Technology, 60, 311–316.

    Article  Google Scholar 

  101. E.H. Lee (1969). Elastic-plastic deformation at finite strains.J. Applied Mech. ASME,36. 1–6.

    MATH  Google Scholar 

  102. K.J. Bathe (1986).Finite Element procedures. Prentice Hall.

  103. D. Perié, M. Vaz and D.R.J. Owen (1999). On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications.Comp Meth. Applied Mech. and Eng.,176, 279–312.

    Article  Google Scholar 

  104. A.L. Eterovic and K.-J. Bathe (1990). A hyperelastic-based large strain elasto-plasstic constitutive formulation with combined isotropic-kiematic hardening using the logarithmic stress and strain measures.Int. J. Numer. Meth. in Engng,30, 1099–1114.

    Article  MATH  Google Scholar 

  105. J.C. Simo (1992). Algorithms for static and dynamic multiplicative plasticity that preserve the classical return-mapping algorithm schemes of the infinitesimal theory.Comp. Meth. Applied Mech. and Eng.,99, 61–112.

    Article  MathSciNet  MATH  Google Scholar 

  106. A. Cuiti no and M. Ortiz (1992). A material-independent method for extending stress-update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics.Engimeering computations,9, 437–451.

    Article  Google Scholar 

  107. J.C. Simo and C. Miehe (1992). Associative coupled thermoplasticity at finite strains: formulation numerical analysis and implementation.Comp. Meth. Applied Mech. and Eng.,98, 41–104.

    Article  MATH  Google Scholar 

  108. J.C. Simo and T.J.R. Hughes (1998).Computational inelasticity. Springer-Verlag.

  109. J.S. Chen, Y. Yoon and C.T. Wu (2002). Non-linear version of stabilized conforming nodal integration for galerkin mesh-free methods.Int. J. Numer. Meth. Engng,53, 2587–2615.

    Article  MATH  Google Scholar 

  110. G. Taylor and H. Quinney (1934). The latent energy remaining in a metal after cold working.Proceedings of the Royal Society,143, 307–326.

    Article  Google Scholar 

  111. B. Nayroles, G. Touzot and P. Villon (1992). Generalizing the finite elemnt method: diffuse approximation and diffuse elements.Computational mechanics,10, 307–318.

    Article  MATH  Google Scholar 

  112. T. Belytschko, Y.Y. Lu and L. Gu (1994). Element-free galerkin methods.Int. J. Numer. Meth. in Engng,37, 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  113. W.K. Liu, S. Jun and Y.F. Zhang (1995). Reproducing kernel particle methods.Int. J. Numer. Methods Fluids.,21, 1081–1106.

    Article  MathSciNet  Google Scholar 

  114. L.B. Lucy (1977). A numerical approach to the testing of fuion process.The astronomical journal,88, 1013–1024.

    Article  Google Scholar 

  115. S. Gupta M. Sharan and E.J. Kansa (1997). Application of the multiquadratic method for numerical solution of elliptic partial differential equations.Applied Mathematics and Computation,84, 837–857.

    MathSciNet  Google Scholar 

  116. N. Sukumar, B. Moran and T. Belytschko (1998). The natural elements method in solid mechanics.Int. J. Numer. Meth. in Engng,43, 839–887.

    Article  MathSciNet  MATH  Google Scholar 

  117. S. Li, W. Hoa and W.K. Liu (2000). Mesh-free simulations of shear banding in large deformation.Int. Journ. Solids. and Sruct.,37, 7183–7206.

    Google Scholar 

  118. I. Alfaro, D. Gonzalez, D. Bel, E. Cueto, M. Doblare and F. Chinesta (2004). Recent advances in the meshless simulation of aluminium extrusion and other related forming processes.Archives of Computational Methods in Engineering. to appear.

  119. J. Yvonnet, P. Lorong, D. Ryckelvuck and F. Chinesta (2005). Simulating dynamic thermoelastoplasticity in large transformations witha adaptive refinement in the natural element method: application to shear banding.Int. J. Forming Processes. accepted.

  120. J.S. Chen, C. Pan and C.T. Wu (1997). Large deformation analysis of rubber based on a reproducing kernel particle method.Computer methods in applied mechanics and enginnering,173, 99–109.

    Google Scholar 

  121. J. Dolbow and T. Belytschko (1999). Volumetric locking in the element-free galerkin method.Int. J. Numer. Meth. in Engng,46, 925–942.

    Article  MathSciNet  MATH  Google Scholar 

  122. W.K. Liu, S. Li and T. Belytschko (1997). Moving least square reproducing kernel method (i) methodology and convergence reproducing kernel particle methods.Comput. Meth. Appl. Mech. Engng.,143, 113–154.

    Article  MathSciNet  MATH  Google Scholar 

  123. P. Krysl and T. Belytschko (1996). Element-free galerkin: convergence of the continuous and discontinuous shape functions.Comp. Meth. Applied Mech. and Eng..

  124. J. Yvonnet, D. Ryckelynck, P. Lorong and F. Chinesta (2004). A new extension of the natural element method for non convex and discontinuous domains: the constrained natural element method (c-nem).Int. J. Numer. Meth. in Engng,60, 1451–1474.

    Article  MathSciNet  MATH  Google Scholar 

  125. M. Sambridge, J. Braun and H. McQueen (1995). Geophysical parameterization and interpolation of irregular data using natural neighbours.Geophys. J. Int.,122, 837–857.

    Article  Google Scholar 

  126. R. Sibson (1980). A vector identity for the dirichlet tesselations.Math. Proc. Camb. Phil. Soc.,87, 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  127. H. Hiyoshi and K. Sugihara (2002). Improving continuity of voronoi-based interpolation over delaunay spheres.Computational Geometry,22, 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  128. V.V. Belikov, V.D., Ivanov, V.K. Kontorovich, S.A. Korytnik and A.Y. Semenov (1997). The non-sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points.Computational Mathematics and Mathematical Physics,37 (1), 9–15.

    MathSciNet  Google Scholar 

  129. E. Cueto, M. Doblaré and L. Gracia (2000). Imposing essential boundary conditions in the natural elements method by means of density-scaled alpha-shapes.Int. J. Numer. Meth. in Engng,49, 519–546.

    Article  MATH  Google Scholar 

  130. R. Seidel (1988). Constrained delaunay triangulations and voronoi diagrams with obstacles. In1978–1988 Ten Years IIG, pp. 178–191.

  131. E. Schönhardt (1928). Uber die zerlegung von dreieckspolyedern in tetraeder.Math. Annalen,98.

  132. JR Shewchuck (1998). Tetrahedral mesh generation by delaunay refinement. InProceedings of the fourteenth annual symposium on computational geometry, Minneapolis, Minnesota, pp. 86–95, June. Association for Computing Machinery.

  133. JR Shewchuck (2000). Sweep algorithms for constructing higher-dimensional constrained delaunay triangulations. InProceedings of the sixteenth annual symposium on computational geometry, pp. 350–359, June. Association for Computing Machinery.

  134. J. Yvonnet, F. Chinesta, P. Lorong and D. Rynckelynck (2005). The constrained natural element method (c-nem) for treating thermal models involving moving interfaces.International Journal of Thermal Sciences,44, 559–569.

    Article  Google Scholar 

  135. J. Lemaitre and J.L. Chaboche (1990).Mechanics of solid materials. Cambridge University Press, UK.

    MATH  Google Scholar 

  136. J.-F. Yau, S.-S. Wang and H.T. Corten (1980). A mixed-moed crack analysis of isotropic solids using conservation laws of elasticity.J. Applied Mech. ASME,47, 335–341.

    Article  MATH  Google Scholar 

  137. J.M. Melenk and I. Babuška (1996). The partition of unity finite element method: basic theory and applications.Comp. Meth. Applied Mech. and Eng.,139, 289–314.

    Article  MATH  Google Scholar 

  138. O.C. Zienkiewicz and J.Z. Zhu (1987). A simple error estimator and adaptive procedure for practical engineering analysis.Int. J. Numer. Meth. in Engng. 24, 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  139. N.-S. Lee and K.J. Bathe (1994). Error indicators and adaptive remeshing in large deformation finite element analysis.Finite Element Analysis Design,16, 99–139.

    Article  MathSciNet  MATH  Google Scholar 

  140. G.T. Camacho and M. Ortiz (1996). Computational modeling of impact damage in brittle materials.Int. J. Solids Struc.,33, 2899–2938.

    Article  MATH  Google Scholar 

  141. P. Ladevèze (1998).Non Linear Computational Structural Mechanics, Springer.

  142. I. Babuška and W.C. Rheinboldt (1979). Adaptive approaches and reliability estimations in finite elemenet analysis.Comp. Meth. Applied Mech. and Eng.,17/18, 519–40.

    Article  Google Scholar 

  143. P. Ladevèzeand G. Coffignal and J.P. Pelle (1998). Accuracy of elastoplastic and dynamic analysis. InBabuška et al. eds., Accuracy estimates and adaptive refinements in finite element computations, pp. 86–95, John Wiley, June. Association for Computing Machinery.

  144. T. Belytschko, B.L. Wong and E.J. Plakacz (1989). Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells.Comp. and Struc.,33, 1307–1323.

    Article  MATH  Google Scholar 

  145. M. Ortiz and J.J. Quigley (1991). Adaptive mesh refinement in strain localization problems.Comp. Meth. Applied Mech. and Eng.,90, 781–804.

    Article  Google Scholar 

  146. L. Gallimard, P. Ladevèze and J.P. Pelle (1996). Error estimation and adaptivity in elastoplasticityInt. J. Numer. Meth. in Engng.,39, 189–217.

    Article  MATH  Google Scholar 

  147. W.K. Lin, R.A. Uras and Y. Chen (1997). Enrichment of the finite element method with the reproducing kernel particle method.J. Applied Mech. ASME,64, 861–870.

    Google Scholar 

  148. Y. You, J.S. Chen and H. Lu (2003). Filters, reproducing kernel, and adaptive meshfree method.Computational mechanics,31, 316–326.

    MATH  Google Scholar 

  149. H-J. Chung and T. Belytschko (1998). An error estimate in the efg method.Computational Mechanics,21, 91–100.

    Article  MathSciNet  MATH  Google Scholar 

  150. C.K. Lee and C.E. Zhou (2003). On error estimation and adaptive refinement for element free Galerkin method. Part I: stress recovery and a posteriori error estimation.Comp. & Struc.,82(4–5), 413–428.

    Google Scholar 

  151. C.K. Lee and C.E. Zhou (2003). On error estimation and adaptive refinement for element free Galerkin method. Part II: adaptive refinement.Comp. & Struc.,82(4–5), 429–443.

    Google Scholar 

  152. H. Lu and J.S. Chen (2002). Adaptive meshfree particle method.Lecture notes in Computational Science and Engineering,26, 251–267.

    MathSciNet  Google Scholar 

  153. J. Yoo, B. Moran and J.-S. Chen (1998). Stabilized conforming nodal integration in the natural-element method.Int. J. Numer. Meth. in Engng,60, 861–890.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Lorong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorong, P., Yvonnet, J., Coffignal, G. et al. Contribution of computational mechanics in numerical simulation of machining and blanking: State-of-the-Art. Arch Computat Methods Eng 13, 45–90 (2006). https://doi.org/10.1007/BF02905931

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905931

Keywords

Navigation