Skip to main content
Log in

Computational methods for the evaluation of the electromagnetic losses in electrical machinery

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

This paper deals with the numerical modelling of electromagnetic losses in electrical machines, using electromagnetic field computations, combined with advanced material characterisations. Due to the complexity of this objective, simplified settings, deliberately choosen by physical arguments, must be considered first. The idea is to proceed gradually to the actual problem of an electrical machine through intermediate models showing physical relevance on their own. The numerical methods used to solve these various problems mainly involve modified finite element-finite difference discretisations, which properly take into account the nonlinear and memory properties of the magnetic material. To this end, one must start from suitable variational formulations of the underlying magnetic field problems. The combined magnetodynamic-hysteresis models are validated in several ways, particularly by comparison of numerically obtained electromagnetic losses with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Preisach (1935), “Uber the magnetisch Nachwirkung,”Zeitschrift fur Physik,94, 277–302.

    Article  Google Scholar 

  2. G. Biorci and D. Pescetti (1958), “Analytical theory of the behaviour of Ferromagnetic Materials,”Il Nuovo Cimento,7, 829–842.

    Article  Google Scholar 

  3. D. Jiles and D. Atherton (1984), “Theory of ferromagnetic hysteresis,”J. Appl. Phys.,55, 2115–2120.

    Article  Google Scholar 

  4. E. Stoner and E. Wohlfarth (1991), “A Mechanism of magnetic hysteresis in Heterogeneous Alloys,”IEEE Transactions on Magnetics,27, 3475–3518.

    Article  Google Scholar 

  5. R.D. Pillsbury (1983), “A Three Dimensional Eddy Current Formulation using two potentials: the Magnetic Vector Potential and total Magnetic Scalar Potential,”IEEE Transactions on Magnetics,19, 2284–2287.

    Article  Google Scholar 

  6. J.S. Van Welij (1985), “Calculation of Eddy Currents in Terms of H on Hexahedra,”IEEE Transactions on magnetics,21, 2239–2241.

    Article  Google Scholar 

  7. T. Nakata (1984), “Numerical Analysis of flux and loss distributions in electrical machinery,”IEEE Transactions on Magnetics,20, 1750–1755.

    Article  Google Scholar 

  8. F. Brailsford and R. Fogg (1964), “Anomalous losses in cold reduced grain oriented transformer steel,”Proceedings IEE,111, 1463–1467.

    Google Scholar 

  9. G. Bertotti (1992), “Dynamic Generalisation of the Sealar Preisach model of Hysteresis,”IEEE Transactions on Magnetics,28, 2599–2601.

    Article  Google Scholar 

  10. I.D. Mayergoyz (1991).Mathematical Models of Hysteresis Springer Verlag, New York.

    MATH  Google Scholar 

  11. I.D. Mayergoyz and G. Friedman (1987), “Isotropie vector Preisach model of hysteresis,”Journal of Apolied Physics 61, 4022–4024.

    Article  Google Scholar 

  12. D. Halliday and R. Resnick (1981),Fundamental of Physics, John Wiley & Sons, New York.

    Google Scholar 

  13. J.C. Bavay and J. Verdun (1991), “Alliages fer-silicium,”Technique de l'ingenieur,D2-1, Schiltigheim, Strassbourg, 2110-(1-10)

    Google Scholar 

  14. D. Philips, L. Dupré and J. Melkebeek (1994), “Magneto-dynamic field computation using a rate-dependent Preisach model,”IEEE Transactions on Magnetics 30, 4377–4379.

    Article  Google Scholar 

  15. L. Dupré, R. Van Keer, J. Melkebeek (1997). “Modelling and identification of the iron losses in non-oriented steel laminations using the Preisach theory,”IEE Proceedings, Electric Power Applications,144, 227–334.

    Article  Google Scholar 

  16. L. Dupré, R. Van Keer, J. Melkebeek (1996), “On a numerical method for the evaluation of electromagnetic losses in electric machinery,”International journal for numerical methods in engineering,39, 1535–1553.

    Article  MATH  Google Scholar 

  17. V. Ostovic (1989),Dynamics of Saturated Electric Machines, Springer-Verlag, Berlin.

    Google Scholar 

  18. D. Philips, L. Dupré, R. Van Keer (1990), “Computation of magnetic fields in electric machinery using a coupled finite element-network element method”,Proc. ECMI-90 Conf., pp. 325–329.

  19. D. Philips, E. Loukipoudis, L. Dupré, J. Melkebeek (1992), “A parametric design method for computed aided design of electric machinery,”Journal of Engineering design,3, 255–267.

    Article  Google Scholar 

  20. G. Grellet (1989), “Pertes dans des machines tournantes,”Technique de l'ingenieur,D3-II, Schiltigheim, Strassbourg 3450-(1-23).

    Google Scholar 

  21. P.G. Ciarlet and J.L. Lions (edits) (1991),Numerical analysis-volume 2: Finite Element Methods (Part 1), North-Holland, Amsterdam.

    Google Scholar 

  22. R. Van Keer, L. Dupré, J. Melkebeek (1996), “On a Numerical model for magnetic field computations with non-local boundary conditions,”Journal of Computational and Applied Mathematics,72, 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  23. G.F. Carey and J.T. Oden (1983),Finite Elements Volume II (a second course), Prentice Hall inc., England Cliffs, New Jersey.

    Google Scholar 

  24. D. Philips, L. Dupré, J. Cnops and J. Melkebeek (1994), “The Application of the Preisach Model in Magnetodynamics: Theoretical and Practical Aspects,”Journal Magnetism Magnetic Materials,133, 540–543.

    Article  Google Scholar 

  25. P.A. Raviart and J.M. Thomas (1994)Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles (deuxième tirage), Masson Paris.

    Google Scholar 

  26. K.H., Huebner, E.A. Thornton, T.G. Byrom (1995),The finite element method for engineers (3rd edition), John Wiley, New York.

    Google Scholar 

  27. D. Philips, L. Dupré, J. Melkebeek (1995), “Comparison of Jiles and Preisach hysteresis models in magnetodynamics”IEEE Transactions on Magnetics,31, 3551–3553.

    Article  Google Scholar 

  28. D. Philips, L. Dupré (1996), “Macroscopic Fields in Ferromagnetic Laminations taking into account Hysteresis and Eddy Current Effects,”Jounal of Magnetism and Magnetic Materials,160, 5–10 (invited paper).

    Article  Google Scholar 

  29. L. Dupré, R. Van Keer, J. Melkebeek (1996), “On a Magnetodynamic Model for the Iron Losses in non-oriented Steel Laminations,”Journal of Physics D: Applied Physics,29, 855–861.

    Article  Google Scholar 

  30. L. Dupré, R. Van Keer, J. Melkebeek (1995), “On a Mathematical model for the Electromagnetic Losses in Electric Machinery,”Journal of Mathematical Modelling of Systems,1, 63–74.

    Article  Google Scholar 

  31. G.F. Carey and J.T. Oden (1984),Isimite Elements Volume III (Computational a pects), Prentice Hall inc., England Cliffs, New Jers y.

    Google Scholar 

  32. L. Dupré, R. Van Keer, J. Melkebeek (1997) “A 2D Finite Element Procedune for Magnetic Field Analysis taking into account Vector Preisach Model”Journal of Mathematical Problems in Engineering,3, 267–286.

    Article  MATH  Google Scholar 

  33. L. Dupré, R. Van Keer, J. Melkebeek (1997), “An iron loss model for electrical machines using the Preisach theory”IEEE Transactions on Magnetics, september issue,33, 4158–4160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Keer, R., Dupré, I. & Melkebeek, J. Computational methods for the evaluation of the electromagnetic losses in electrical machinery. Arch Computat Methods Eng 5, 385–443 (1998). https://doi.org/10.1007/BF02905911

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905911

Keywords

Navigation