Skip to main content
Log in

Goldstone mode of chiral symmetry in quantum chromodynamics

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We examine the Dyson qeuation for the quark propagator and the Ward identity for the quark-gluon vertex function in the framework of the gauge technique with the object of investigating broken chiral symmetry in quantum chromodynamics with massless quarks. We find that the chiral-symmetric Wigner-Weyl solution is realized only when the transverse part of the quark-gluon vertex is suppressed; its presence necessarily requires the spontaneous breakdown of chiral symmetry.

Riassunto

Si esamina l’equazione di Dyson per il propagatore di quark e l’identità di Ward per la funzione di vertice quark-gluone nell’ambito della tecnica di gauge con l’obiettivo di studiare la simmetria chirale rotta nella cromodinamica quantistica con quark privi di massa. Si trova che la soluzione di Wigner-Weyl a simmetria chirale si ottiene solo quando la parte trasversale del vertice quark-gluone è soppressa; la sua presenza richiede neoessariamente la rottura spontanea di simmetria chirale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Marciano andH. Pagels:Phys. Rep. C,36, 137 (1978).

    Article  ADS  Google Scholar 

  2. Y. Nambu:Phys. Rev. Lett.,4, 380 (1960);Y. Nambu andG. Jona-Lasinio:Phys. Rev.,122, 345 (1961);J. Goldstone, A. Salam andS. Weinberg:Phys. Rev.,127, 965 (1962).

    Article  ADS  Google Scholar 

  3. S. Weinberg: inLectures on Elementary Particles and Quantum Field Theory, Brandeis University Summer Institute (MIT Press, Cambridge, Mass., 1970), p. 283.

    Google Scholar 

  4. H. Pagels:Phys. Rev. D,19, 3080 (1979);S. Coleman andE. Witten:Phys. Rev. Lett.,45, 100 (1980).

    Article  ADS  Google Scholar 

  5. C. Callan, R. Dashen andD. Gross:Phys. Rev. D,17, 2717 (1978);D. Caldi:Phys. Rev. Lett.,39, 121 (1977);G. ’t Hooft:Phys. Rev. D,14, 3432 (1976).

    Article  ADS  Google Scholar 

  6. C. Callan, R. Dashen andD. Gross:Phys. Rev. D,19, 1826 (1979).

    Article  ADS  Google Scholar 

  7. J. S. Ball andF. Zachariasen:Phys. Lett. B,106, 133 (1981).

    Article  ADS  Google Scholar 

  8. J. M. Cornwall:Phys. Rev. D,22, 1452 (1980).

    Article  ADS  Google Scholar 

  9. J. Finger andJ. Mandula:Nucl. Phys. B,199, 168 (1982);A. Patrasciouiu andM. Scadron:Phys. Rev. D,22, 2054 (1980);M. Peskin: inRecent Advances in Field Theory and Statistical Mechanics, edited byJ. Zuber andR. Stora (North-Holland Publ. Co., Amsterdam, 1984), p. 219.

    Article  ADS  Google Scholar 

  10. R. Acharya andP. Narayana-Swamy:Phys. Rev. D,26, 2797 (1982).

    Article  ADS  Google Scholar 

  11. R. Acharya andP. Narayana-Swamy:Nuovo Cimento A,86, 157 (1985);Z. Phys. C,28, 463 (1985).

    Article  ADS  Google Scholar 

  12. J. S. Ball andT. Chiu:Phys. Rev. D,22, 2542 (1980).

    Article  ADS  Google Scholar 

  13. M. Baker, J. Ball andF. Zachariasen:Phys. Rev. D,31, 2575 (1985).

    Article  ADS  Google Scholar 

  14. A. Salam:Phys. Rev.,130, 1287 (1963);R. Delbourgo andP. West:J. Phys. A,10, 1049 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. Lane:Phys. Rev. D,10, 2605 (1974).

    Article  ADS  Google Scholar 

  16. S. Mandelstam:Phys. Rev. D,20, 3223 (1979).

    Article  ADS  Google Scholar 

  17. K. Johnson andM. Baker:Phys. Rev. D,8, 1110 (1973), and references therein;S. L. Adler andW. Bardeen:Phys. Rev. D,4, 3045 (1971).

    Article  ADS  Google Scholar 

  18. H. Politzer:Nucl. Phys. B,117, 397 (1976); alsoV. Elias andM. Scadron:Phys. Rev. D,30, 647 (1984).

    Article  ADS  Google Scholar 

  19. H. Pagels:Phys. Rev. D,21, 2336 (1980).

    Article  ADS  Google Scholar 

  20. H. Pagels andS. Stokar:Phys. Rev. D,20, 2947 (1979).

    Article  ADS  Google Scholar 

  21. See alsoJ. S. Ball: inWorkshop on Nonperturbative Quantum Chromodynamics, edited by K. Milton and M. Samuel (Birkhauser Publishers, Boston, Mass., 1983).

    Google Scholar 

  22. This has been emphasized inJ. Gasser andH. Leutwtlee:Phys. Rep. C,87, 78 (1982).

    Article  ADS  Google Scholar 

  23. S. Weinberg:Phys. Rev. D,13, 974 (1976).

    Article  ADS  Google Scholar 

  24. seeA. Salomone, J. Schechter andT. TuDRON:Phys. Rev. D,24, 492 (1981). See J. S. Ball and F. Zachariasen:Phys. Lett. B,106, 133 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, R., Narayana Swamy, P. Goldstone mode of chiral symmetry in quantum chromodynamics. Nuov Cim A 95, 229–237 (1986). https://doi.org/10.1007/BF02905815

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905815

PACS

PACS

Navigation