Skip to main content

Advertisement

Log in

BMD188, A novel hydroxamic acid compound, demonstrates potent anti-prostate cancer effectsin vitro andin vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species, and proteases

  • Article
  • Published:
Pathology & Oncology Research

Abstract

A newly synthesized cyclic hydroxamic acid compound, BMD188 [cis-l-hydroxy-4-(l-naphthyl)-6-oc-tylpiperidine-2-one], was found to induce the apoptotic death of cultured prostate cancer cells by activating caspase-3. Orally administered BMD188 significantly inhibited the primary growth of prostate cancer cells (Dul45) orthotopically implanted into SCID mice. Mechanistic studies indicated that BMD188 did not alter the protein levels of several Bcl-2 family members. In contrast, the BMD188 effect required three essential factors: reactive oxygen species (ROS), the mitochondrial respiratory chain function, and proteases. First, the apoptosis-inducing effect of BMD188 could be blocked by ROS scavengers such as Desferal. Second, both BMD188-induced PARP cleavage as well as PC3 cell apoptosis could be dramatically inhibited by several complex-specific mitochondrial respiration blockers. The involvement of mitochondria was also supported by the observations that BMD188 dramatically altered the mitochondrial distribution and morphology without affecting the cellular ATP levels. Finally, the apoptosis-inducing effect of BMD188 in PC3 cells could be significantly inhibited by serine protease inhibitors (TPCK and TLCK) as well as by caspase inhibitors (zVAD-fmk and DEVD-CHO). Collectively, the present study suggests that BMD188 and its analogs may find clinical applications in the treatment of prostate cancer patients by inducing apoptotic death of prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang DG, and Porter AT: Target to apoptosis: A hopeful weapon for prostate cancer. Prostate 32:284–293, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Vukanovic J, and Isaacs JT: Human prostate cancer cells are sensitive to programmed (apoptotic) death induced by the antiangiogenic agent Linomide. Cancer Res 55:3517–3520, 1995.

    PubMed  CAS  Google Scholar 

  3. Li CJ, Wang C and Pardee AB: Induction of apoptosis bylapachone in human prostate cancer cells. Cancer Res. 55:3712–3715,1995.

    PubMed  CAS  Google Scholar 

  4. Reed JC, Stein C, Subasinhe C et al: Antisense-mediated inhibition of BCL-2 protooncogene expression and leukemic cell growth and survival: comparison of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50:6565–6570, 1990.

    PubMed  CAS  Google Scholar 

  5. Yang C, Cirielli C, Capogrossi MC et al: Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 55:4210–4213, 1995.

    PubMed  CAS  Google Scholar 

  6. Eastman JA, Hall SJ, Sehgal I et al: In vivo gene therapy with p53-p21 adenovirus for prostate cancer. Cancer Res 55:5151–5155, 1995.

    Google Scholar 

  7. Furuya Y, Lundmo P, Short AD et al: The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostate cancer cells by thapsigargin. Cancer Res 54:6167–6175, 1994.

    PubMed  CAS  Google Scholar 

  8. Tang DG, Chen YQ, and Honn KV: Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci USA 93:5241–5246, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Tang D, and Honn KV: Apoptosis of W256 carcinosarcoma cells of the monocytoid origin induced by NDGA involves lipid peroxidation and depletion of GSH: Role of 12-lipoxygenase in regulating tumor cell survival. J Cell Physiol 172:155–170, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Tang D, Guan K-L, Li L, et al: Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other unsaturated fatty acids. Int J Cancer 72:1078–1087, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Tang DG, Li L, Zhu Z et al: Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem Biophys Res Commun 242:380–384, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Krajewski S, Zapata JM, and Reed JC: Detection of multiple antigens on Western blots. Anal Biochem 236:221–228, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Li L,Zhu Z,Joshi B,et al: A novel hydroxamic acid compound, BMD188, demonstrates anti-prostate cancer effects by inducing apoptosis. I: In vitro studies. Anticancer Res Submitted.

  14. Timar J, Raso E, and Fazakas Zs, et al: Multiple use of a signal transduction pathway in tumor cell invasion. Anticancer Res 16:3299–3306, 1996.

    PubMed  CAS  Google Scholar 

  15. Tang DG, Li L, Chopra D, et al: Extended survivability of prostate cancer cells in the absence of trophic factors: Increased proliferation, evasion of apoptosis and the role of apoptosis proteins. Cancer Res 58, 3466–3479, 1998.

    PubMed  CAS  Google Scholar 

  16. Summers JB, Mazdiyasni H, Holms JH, et al: Hydroxamic acid inhibitors of 5-lipoxygenase. J Med Chem 30:574–580, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Jackson WP, Islip PJ, Kneen G, et al: Acetohydroxamic acid inhibitors of 5-lipoxygenase. J Med Chem 31:499–500, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Van Reyk DM, and Dean RT: The iron-selective chelator desferal can reduce chelated copper. Free Rad Res 24:55–60, 1996.

    Article  Google Scholar 

  19. Lanerdal B, and Iyer S: Lactoferrin: Molecular structure and biochemical function. Annu Rev Nutr 15:93–110, 1995.

    Article  Google Scholar 

  20. Richter, C: Pro-oxidants and mitochondrial Ca2+: their relationship to apoptosis and oncogenesis. FEBS Lett 325:104–107, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Marchetti P, Susin SA, Decaudin D, et al: Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res 56:2033–2038, 1996.

    PubMed  CAS  Google Scholar 

  22. Zhivotovsky B, Gahm A, Ankarcrona M, et al: Multiple proteases are involved in thymocyte apoptosis. Exp Cell Res 221:404–412, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Brown SB, Bailey K, and Savill J: Actin is cleaved during constitutive apoptosis. Biochem. J 323:233–237, 1997.

    PubMed  CAS  Google Scholar 

  24. Deng G, and Podack ER: Deoxyribonuclease induction in apopototic cytotoxic T lymphocytes. FASEB J 9:665–669, 1995.

    PubMed  CAS  Google Scholar 

  25. Grimm LM, Goldberg AL, Poirier GG, et al: Proteosomes play an essential role in thymocyte apoptosis. EMBO J 15:3835–3844, 1996.

    PubMed  CAS  Google Scholar 

  26. Drexler HCA: Activation of the cell death program by inhibition of the proteosome function. Proc Natl Acad Sci USA 94:855–860, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Faleiro L, Kobayashi R, Fearnhead H, et al: Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 16:2271–2281, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Porter AG, Ng P, and Janicke RU: Death substrates come alive. BioEssays 19:501–507, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, et al: Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. J Biol Chem 267:5317–5323, 1992.

    PubMed  CAS  Google Scholar 

  30. Heerdt BG, Houston MA, and Augenlicht LH: Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 8:523–532, 1997.

    PubMed  CAS  Google Scholar 

  31. Eguchi Y, Shimizu S, and Tsujimoto Y: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840, 1997.

    PubMed  CAS  Google Scholar 

  32. Shimizu S, Eguchi Y, Kamiiki W et al: Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12:2045–2050, 1996.

    PubMed  CAS  Google Scholar 

  33. Buttke TM, and Sandstrom PA: Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Glinn MA, Lee CP, and Ernster L: Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influcing NAD(P)H-induced lipid peroxidation. Biochim Biophys Acta 1318:246–254, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Lander HM: An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124, 1997.

    PubMed  CAS  Google Scholar 

  36. Hentze MW, and Kuhn LC: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Lash A, and Saleem A: Iron metabolism and its regulation. A review. Ann Clin Lab Sci 25:20–30, 1995.

    CAS  Google Scholar 

  38. Zoeteweij JP, van de Water B, de Bont HJGM, et al: Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes. Biochem J 288:207–213, 1992.

    PubMed  CAS  Google Scholar 

  39. van de Water B, Zoeteweij JP, de Bont HJGM, et al: Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential: Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. J Biol Chem 269:14546–14552, 1994.

    PubMed  Google Scholar 

  40. Kowaltowski AJ, Castilho RF, and Vercesi AE: Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 378:150–152, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Marchetti P, Castedo M, Susin SA, et al: Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Zamzami N, Susin SA, Marchetti P, et al: Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean G Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

G Tang, D., Li, L., Zhu, Z. et al. BMD188, A novel hydroxamic acid compound, demonstrates potent anti-prostate cancer effectsin vitro andin vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species, and proteases. Pathol. Oncol. Res. 4, 179–190 (1998). https://doi.org/10.1007/BF02905247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905247

Key words

Navigation