Skip to main content
Log in

Bond mechanism of FRP rebars to concrete

  • Technical Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The bond mechanism of Fiber Reinforced Polymer (FRP) rebar to concrete was studied. Five different types of 12.7 and 12.0-mm rebar subjected to different surface treatments were tested, and the bond mechanism was compared with that of untreated FRP rods and ordinary deformed steel.

High bond values were obtained for rods exhibiting a stiff deformed surface, on which large deformations were molded by resin, and for rods with a rough surface whereby the roughness has resulted either from winding a helical fiber together with embedded sand particles or from using excess polymer. The bond values recorded were equivalent to or larger than those of ordinary deformed steel. Low bond strength was obtained both for rods with a thick polymeric layer of low mechanical for rods with a thick polymeric layer of low mechanical properties and for rods with smooth surfaces.

Different pre-peak and post-peak behavior was observed for the various rods when the entire set of P-s (Pullout load vs. slip) curves were compared. Brittle behavior was apparent wherever the external layer of the rod exhibited large deformations formed in a stiff matrix. Where the surface was rough, more ductile behavior was detected. The wedging of particles into the surface can alter the load-slip behavior, from one of slip-weakening to one of slip-hardening.

Résumé

Une étude a été menée sur le mécanisme de l’adhérence an béton de barres nervurées en polymère renforcé par des fibres (PRF). Cinq différents types de barres nervurées, de 12,7 mm et de 12,0 mm, présentant différents traitements de surfaces, out été testés. Le mécanisme de l’adhérence a été comparé au mécanisme de barres PRF non-traitées et à celui de barres crénelées en acier ordinaire.

Des valeurs élevées d’adhérence ont été obtenues avec des barres ayant une surface rigide déformée, où d’importantes crénelures ont été formées par la résine, ou avec des barres ayant une surface inégale, dont les aspérités avaient été obtenues par l’enroulement d’une fibre hélicoïdale et l’enrobage de particules de sable ou encore en utilisant un surplus de polymère. Les valeurs d’adhérence étaient similaires ou supérieures à celles des barres crénelées en acier ordinaire. Une adhérence inférieure a été obtenue avec une barre couverte d’une couche épaisse de polymère ayant des qualités mécaniques inférieures ou avec une barre à surface lisse.

En comparant les courbes de force d’extraction-glissement, un comportement différent avant et après le sommet a été observé pour les différentes barres. Un comportement fragile a été noté aux endroits où la couche extérieure de la barre présentait d’importantes crénelures, formées dans un polymère rigide. Aux endroits où la surface était inégale, un comportement plus ductile a été observé. Le clavetage des particules dans la surface est susceptible de modifier le comportement de la force d’extraction-glissement d’un affaiblissement du glissement vers un durcissement de ce dernier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasheeduzzafar, A., Dakhil, F., Bada, M., and Khan, M., ‘Performance of corrosion-resistance steel in chloride-bearing concrete’,American Concrete Institute (ACI) Materials Journal 89 (5) (1992) 439–448.

    Google Scholar 

  2. Clear, K. C., ‘Effectiveness of epoxy-coated reinforcing steel’,Concrete International 14 (5) (1992) 58–64.

    Google Scholar 

  3. Uomoto, T. and Ohga, H., ‘Performance of Fiber Reinforced Plastics for Construction Reinforcement’, Proceedings of Advanced Composites Materials in bridges and Structures, M. M. El-Bardy Editor. The Canadian Society for Civil Engineers. 1996, 125–132.

  4. Nanni, A., Okamoto, T., Tanigaki, M. and Osakada, S., ‘Tensile properties of braided FRP rods for concrete reinforcement’,Cement & Concrete Composites 15 (3) (1993) 121–129.

    Article  Google Scholar 

  5. Bank, L. C., Puterman, M. and Katz, A., ‘The effect of material degradation on bond properties of FRP reinforcing bars in concrete’,American Concrete Institute (ACI) Materials Journal 95 (3) (1998) 232–243.

    Google Scholar 

  6. Benmokrane, B., Tighiouart, B., and Chaallal, O., ‘Bond strength and load distribution of composite GFRP reinforcing bars in concrete’,Ibid. 93 (3) (1996) 246–253.

    Google Scholar 

  7. Cosenza, E., Manfredi, G. and Realfonzo, R., ‘Rehavior and modeling of bond of FRP rebars to concrete’,Journal of Composites for Construction,1 (2) (1997) 40–51.

    Article  Google Scholar 

  8. Nanni, A., Al-Zaharani, M. M., Al-Dulaijan, S. U., Bakis, C. E., and Boothby, T. E., ‘Bond of FRP Reinforcement to Concrete-Experimental Results’, Proceedings, 2nd Int. RILEM Symposium, FRPRCS-2. Taerwe, L. Editor, 1995. pp. 135–145.

  9. Chaallal and Benmokrane, ‘Pullout and bond of glass-fiber rods embedded in concrete and cement grout’,Mater. Struct. 26 (1993) 167–175.

    Article  Google Scholar 

  10. Al-Zaharani M. M., ‘Bond Behavior of Fiber Reinforced Plastics (FRP) Reinforcement with Concrete’, Ph. D. Thesis. Pennsylvania State University, 1995.

  11. Tepfer, R. and Karlsson, M., ‘Pullout and Tensile Reinforcement Splice Tests Using FRPC-Bar’, Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Vol. 2, 1997, 357–364.

    Google Scholar 

  12. Katz, A., Berman N. and Bank, L. C., ‘Effect of high temperature on the bond strength of FRP rebars’,Journal of Composites in Construction 3 (2) (1999) 73–81.

    Article  Google Scholar 

  13. Katz, A., ‘Bond to concrete of FRP rebars after cyclic loading’. Accepted for publication inComposites for Construction, 1999.

  14. Katz, A. and Berman N., ‘Modeling the effect of high temperature on the bond of FRP rebars to concrete’, Submitted for publication inCement and Concrete Composites, 1998.

  15. Katz, A., Li, V. C. and Kazmer A., ‘Bond properties of carbon fiber in cementitious matrix’,ASCE J. of Materials in Civil Engineering 7 (2) (1995) 125–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Dr. A Katz is a RILEM Senior Member. He works at the National Building Research Institute, a RILEM Titular Member

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, A. Bond mechanism of FRP rebars to concrete. Mater Struct 32, 761–768 (1999). https://doi.org/10.1007/BF02905073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905073

Keywords

Navigation