Skip to main content
Log in

Phagocytosis and cellular metabolism

A study on mouse and human macrophages in culture

  • Original Contributions
  • Published:
Ricerca in clinica e in laboratorio

Summary

The uptake of foreign particles by mouse and human macrophages influenced by various metabolic inhibitors was examined in order to obtain further informations about the energy-dependent mechanisms which are involved in the phagocytic process. The inhibitors employed were iodoacetate, fluoroacetate, fluoride, malonate, sodium azide, 2-4-dinitrophenol, cycloheximide and ouabain. These substances were rested on monolayer cultures and the phagocytosis assay was performed by using zymosan suspension in the nutrient media. The quantitation of phagocytosis was obtained by the direct count of intracellular zymosan particles (immersion microscopy, 100x) and the results were evaluated and compared by biometrical analysis. The effects of these inhibitors on phagocytosis and their relation with the metabolic intracellular pathways are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anscombe F. J.: The statistical analysis of insect count based on negative binomial distribution—Biometrics5, 165, 1949.

    Article  PubMed  CAS  Google Scholar 

  2. Anscombe F. J.: Sampling theory of the negative binomial and logarithmic series distributions—Biometrika37, 358, 1950.

    PubMed  CAS  Google Scholar 

  3. Baldridge C. W., Gerard R. W.: The extrarespiration of phagocytosis—Amer. J. Physiol.103, 235, 1933.

    CAS  Google Scholar 

  4. Beck W. S.: The control of leukocyte glycolysis—J. biol. Chem.232, 251, 1958.

    PubMed  CAS  Google Scholar 

  5. Broyen T. D.: Mechanisms of phagocytosis in human polymorphonuclear leukocytes—Immunology10, 137, 1966.

    Google Scholar 

  6. Buffa P., Peters R. A.: Thein vivo formation of citrate induced by fluoroacetate and its significance—J. Physiol. (Lond.)110, 488, 1949.

    CAS  Google Scholar 

  7. Cagan R. H., Karnovsky M. L.: Enzymatic basis of the respiratory stimulation during phagocytosis—Nature (Lond.)204, 255, 1964.

    Article  CAS  Google Scholar 

  8. Case E. M., McIlvain H.: Respiration and phosphorylation in preparation from mammalian brain—Biochem. J.48, 1, 1951.

    PubMed  CAS  Google Scholar 

  9. Chang Y. T., Andersen R. N.: Studies on the long-term growth of macrophages obtained from various sources—In:Wagner W. H., Hahn H. (Eds): Activation of macrophages. Workshop conferences Hoechst. Excerpta Medica, Amsterdam, 1974; vol. 2, p. 5.

    Google Scholar 

  10. Cline M. J., Lehrer R. I.: Phagocytosis by human monocytes—Blood32 423, 1968.

    PubMed  CAS  Google Scholar 

  11. Cohen A. B., Cline M. J.: The human alveolar macrophages: isolation, cultivationin vitro and studies of morphologic and functional characteristics—J. clin. Invest.40, 1390, 1971.

    Article  Google Scholar 

  12. Cohn Z. A., Benson B.: The differentiation of mononuclear phagocytes. Morphology, cytochemistry and biochemistry—J. exp. Med.121, 153, 1965.

    Article  PubMed  CAS  Google Scholar 

  13. Cohn Z. A., Morse S. I.: Functional and metabolic properties of polymorphonuclear leukocytes. I. Observation on the requirements and consequences of particles ingestion—J. exp. Med.111, 667, 1960.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper D., Banthorpe D. U., Wilkie D.: Modified ribosomes conferring resistance to cycloheximide inmutans ofSaccharomyces cerevisiae—J. molec. Biol.26, 347, 1967.

    Article  PubMed  CAS  Google Scholar 

  15. Cramble J. L., Jr.: K+ binding and oxidative phosphorylation in the mitochondria and mitochondrial membrane fragments—J. biol. Chem.228, 955, 1957.

    Google Scholar 

  16. Evans W. H., Karnovsky M. L.: A possible mechanism for the stimulation of some metabolic functions during phagocytosis—J. biol. Chem.236, 30, 1961.

    Google Scholar 

  17. Fuhrman F. A., Field J.: Effect of iodoacetate on respiration and glycolysis in excised rat brain—J. cell. comp. Physiol.21, 397, 1943.

    Article  Google Scholar 

  18. Ghaffar A.: A note on the mechanism of iodoacetate poisoning of muscle—Quart. J. exp. Physiol.25, 61, 1935.

    CAS  Google Scholar 

  19. Giordano G. F., Lichtman M. A.: The role of sulfhydryl groups in human neutrophil adhesion, movement and particle ingestion—J. cell. Physiol.82, 387, 1973.

    Article  PubMed  CAS  Google Scholar 

  20. Helmreich E., Eisen H. N.: Steady state concentration of glucose in isolated tissue cells—Fed. Proc.17, 240, 1958.

    Google Scholar 

  21. Hotchkiss R. D.: Gramicidin, tyrocidine and tyrothricin—Advanc. Enzymol.4, 153, 1944.

    CAS  Google Scholar 

  22. Iyer G. Y., Islam M. F., Quastel J. H.: Biochemical aspects of phagocytosis—Nature (Lond.)192, 535, 1961.

    Article  CAS  Google Scholar 

  23. Karnovsky M. L.: Metabolic basis of phagocytic activity—Physiol. Rev.42, 143, 1962.

    PubMed  CAS  Google Scholar 

  24. Lehninger A. L.: The oxidation types and the respiratory chain—In: The mitochondrion. Molecular basis of structure and function. W. A. Benjamin, Inc., New York, 1965; p. 59.

    Google Scholar 

  25. Mantovani B., Rabinovitch M., Nussenzveig V.: Phagocytosis of immune complexes by macrophages. Different roles of the macrophage receptor sites for complement (C3) and for IgG—J. exp. Med.135, 780, 1972.

    Article  PubMed  CAS  Google Scholar 

  26. Marchand J. C., Leroux J. P., Cartier P.: The energy metabolism of human blood polymor-phonuclear cells. Action of various effectors except hormones—Europ. J. Biochem.31, 483, 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Mason R. J., Stossel T. P., Vaughan M.: Quantitative studies of phagocytosis by alveolar macrophages—Biochim. biophys. Acta (Amst.)304, 864, 1973.

    CAS  Google Scholar 

  28. McKinney G. R., Martin S. T., Rundles R. W., Green R.: Respiratory and glycolytic activities of human leukocytesin vitro—J. appl. Physiol.5, 335, 1953.

    PubMed  CAS  Google Scholar 

  29. Meyerhof O., Boyland E.: Über den Atmungsvorgang jodessigsäurevergifteter Muskeln—Biochem. Z.237, 406, 1931.

    CAS  Google Scholar 

  30. Michell R. H., Pancake S. J., Nosewartly J., Karnovsky M. L.: Measurements of rates of phagocytosis. The use of cellular monolayers—J. Cell Biol.40, 216, 1969.

    Article  PubMed  CAS  Google Scholar 

  31. Moores G. R., Partridge T. A.: In:Beck F., Lloyd J. B. (Eds): The cell in medical science—Academic Press, New York, 1974; p. 98.

    Google Scholar 

  32. North R. J.: The localization by electron microscopy of nucleoside phosphatase activity in guinea pig phagocytic cell—J. ultrastruct. Res.16, 83, 1966.

    Article  PubMed  CAS  Google Scholar 

  33. Ord J. K.: In: Families of frequency distributions—Griffin, London, 1972.

    Google Scholar 

  34. Oren R., Farnham A. E., Saito K., Milofsky E., Karnovsky M. L.: Metabolic patterns in three types of phagocytizing cells—J. Cell Biol.17, 487, 1963.

    Article  PubMed  CAS  Google Scholar 

  35. Peters R. A.: Mechanism of the toxicity of the active constituent of theDichapetalum cymosum and related compound—Advanc. Enzymol.18, 113, 1957.

    CAS  Google Scholar 

  36. Pike B. L., Robinson W. A.: Human bone marrow colony growth in agar-gel—J. cell. Physiol.76, 77, 1970.

    Article  PubMed  CAS  Google Scholar 

  37. Rohatgi V. K.: In: An introduction to probability theory and mathematical statistics—Wiley, New York, 1976; chapt. 3, p. 83.

    Google Scholar 

  38. Rossi F., Zatti M.: Biochemical aspects of phagocytosis in polymorphonuclear leukocytes. NADH+ and NADPH+ oxidation by the granules of resting and phagocytizing cells—Experientin (Basel)20, 21, 1964.

    CAS  Google Scholar 

  39. Sbarra A. J., Karnovsky M. L.: The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes—J. biol. Chem.234, 1355, 1959.

    PubMed  CAS  Google Scholar 

  40. Sisler H. D., Siegal M. R.: In: Antibiotics. Mechanisms of action—Springer Verlag, Berlin-Heidelberg-New York, 1972; vol. 1.

    Google Scholar 

  41. Stähelin H., Karnovsky M. L., Farnham A. E., Suter E.: Studies of the Interaction between phagocytes and tubercle bacilli—J. exp. Med.105, 265, 1957.

    Article  PubMed  Google Scholar 

  42. Stähelin H., Karnovsky M. L., Suter E.: Studies on the interaction between phagocytes and tubercle bacilli—J. exp. Med.104, 102, 1956.

    Google Scholar 

  43. Stossel T. P.: Phagocytosis: recognition and ingestion—Semin. Haemat.12, 83, 1975.

    CAS  Google Scholar 

  44. Stossel T. P., Mason R. J., Hartwig J., Vaughan M.: Quantitative studies of phagocytosis by polymorphonuclear leukocytes. Use of paraffin oil emulsion to measure the initial rate of phagocytosis—J. clin. Invest.51, 615, 1972.

    Article  PubMed  CAS  Google Scholar 

  45. Ward P. A., Zvaifler N. J.: Quantitative phagocytosis by neutrophils. I. A new method with immune complexes—J. Immunol.111, 1771, 1973.

    PubMed  CAS  Google Scholar 

  46. Warringer G. P. I., Giuditta A.: Studies on succinic dehydrogenase. IX. Characterization of the enzyme from theMicrococcus lactilytius—J. biol. Chem.230, 111, 1958.

    Google Scholar 

  47. Wilkes S.: In: Mathematical statistics—Wiley, New York, 1962; chapt. 14, p. 454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradisi, F., D'Onofrio, C., Pepe, G. et al. Phagocytosis and cellular metabolism. La Ricerca Clin. Lab. 9, 47–60 (1979). https://doi.org/10.1007/BF02905027

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02905027

Key-words

Navigation